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INTRODUCTION 

In recent years, concerns over treatment of organic industrial 

wastes have resulted in the development of several high-rate anaerobic 

processes (Speece, 1983). These processes can be classified into upflow 

or downflow, packed bed or unpacked bed. Depending on the type of 

packing used and the hydraulic regime operated, the upflow packed-bed 

process can be further classified into static bed, expanded bed, or 

fluidized bed. Figure 1 shows schematics of these processes. The term 

"submerged media anaerobic reactor" (SMAR) was coined for the upflow 

packed-bed processes by an ad hoc committee to alleviate confusion in 

nomenclature (Argonne National Laboratory, 1980). 

Characteristics of Static-Bed SMAR 

The static-bed SMAR is basically a column packed with some type of 

media. The influent enters a bottom distribution panel and flows upward 

through the packing where biomass develops. The biomass occurs either in 

the voids (biofloc) or on the surface (biofilm) of the packing. Biogas 

is produced as the end product of anaerobic digestion. Biogas consists 

mainly of methane and carbon dioxide with small quantities of nitrogen, 

hydrogen sulfide, and hydrogen. This characterizes the SMAR system as a 

complex, three-phase (liquid, biomass, and biogas) anaerobic system 

(Figure 2). 

The SMAR process has been of special interest because of its better 

biomass retention capability over the unpacked process (Frostell, 1981). 
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FIGURE 1. Schematics of modern high-rate anaerobic processes (Speece, 
1983) 
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Consequently, a longer solids retention time (SRT) can be achieved. An 

SRT of over 500 days has been reported (Young and McCarty, 1969; Jennett 

and Dennis, 1975). A long SRT is essential for successful treatment 

(Dague et ai., 1970). Pilot studies over the past 20 years Indicate that 

a long SRT is also important in successful operation under non-optimal 

conditions, such as ambient temperature operation (Young and McCarty, 

1969; Rlttmann et al., 1982; Oleszklewicz and Koziarski, 1982; Kelly and 

Switzenbaum, 1984), pH between 6 to 8 (Clark and Speece, 1970; Dague and 

Porter, 1982), and high toxicants levels (Parkin et al., 1983; Blum et 

al., 1986). 

The SMAR process is characterized by a highly heterogeneous 

distribution of biomass mainly resulting from the upflow operation. The 

lower part of the SMAR, which is often responsible for a major portion of 

substrate removal, often contains a high concentration of biomass (10-15 

g TSS/L) with self-induced mixing due mainly to internally produced 

biogas. The substrate utilization behavior of the biomass under this 

environment has not yet been well studied. 

The biogas mixing Intensity has been estimated using the isothermal 

energy dissipation theory (USEPA, 1979). Assuming a single point biogas 

production at pressure P2 and allowing for an Isothermal expansion to 

pressure pi, the energy dissipation rate (E) and the mean velocity 

gradient (G) resulting from the expansion are: 
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E = piQg ln(pi/p2) (1) 

G =(y5^1/2 (2) 

where, "E" Is the energy dissipation rate (power) In kW; "G" Is the mean 

velocity gradient in 1/sec; "pi" and "pz" are the biogas pressure at the 

production point and at the expansion point, respectively, in kN/m^; "Qg" 

is the biogas flowrate at pi in m^/s; "V" is the liquid volume of the 

reactor in m^; and "m" is the Newton's viscosity of the liquid in kN-

sec/m2. 

As a result of biogas mixing, the growth is often developed into 

granular aggregates with excellent settling properties (Dague et al., 

1970). The granules have typical diameters of 1-5 mm (Lettinga et al., 

1980) and settling velocities of approximately 1.2 cm/s (Sahm, 1984). 

The granules are negatively charged with extracellular polymeric 

substances, which are important to the aggregation (Mahoney et al., 

1984). It has also been found that the granules are capable of 

significant absorption of many organic compounds (Johnson and Young, 

1983). 

The ultrastructure morphology of anaerobic biofilm (from down-flow 

stationary reactors) was recently studied using the scanning electron 

microscopy (SEM). The biofilm consists of two distinct layers of 

methanogens with Methanothrix Interweaving at the surface amd 

Methanosarcina embedded in deeper layers. The biofllm structure is 
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characterized with an extensive network of channels that may facilitate 

biogas and nutrient exchanges Into the deeper regions of growth (Robinson 

et al,, 1984). As the biofilm grows, electron-dense mineral deposition, 

enriched with calcium and phosphorus, may occur and eventually block the 

transport sites and retard methanogenic activity (Harvey et al., 1984). 

With recent advances in anaerobic microbiology, the advantage of 

highly concentrated biomass over dispersed biomass in hydrogen 

interspecies transfer becomes better understood. Process designs that 

encourage hydrogen producers (H2-producing acetogens) and hydrogen 

utilizers (methanogens) to live in close proximity, such as in the SMAR 

process, are more favorable to high rates of H2 conversion in the system. 

Without the transfer, H2 may quickly build up emd inhibit the system 

(Bryant, 1979). The H2 partial pressure normally ranges from 0.1 to 2.0 

X lOr* atm, depending on loading rates. At a COD loading rate of 10 

g/L/d, it is estimated that the H2 Ist-order rate constant can reach as 

high as about 80 i/s with the two H2-transfer species living within a 

distance of about 10 #m. At a higher COD removal rate of 40 g/L/d, the 

distance has to be about 5 Mm (McCarty and Smith, 1986). 

Another feature of the SMAR process is related to the limited self-

induced biogas mixing intensity. The substrate gradient across the 

liquid film is greater for the SMAR system than for systems with higher 

mixing intensity. Consequently, when the SMAR is exposed to toxicants 

(as the secondary substrate), the actual toxicant levels reaching the 

biomass are reduced as the toxicants diffusion through the liquid film. 
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This might explain why the SMAR system is more tolerant to higher 

toxicant levels than the CSTR system (Parkin et al., 1983). 

Packing media are another important feature in the SMAR process. 

The role of the packing media and their design criteria are now better 

understood with the efforts of Young and his associates (Young and Dahab, 

1982; Young, 1985; Song and Young, 1986). The media should be designed 

to provide a better biomass retention capability and to increase the 

intermixing and contact efficiency between substrate and organisms. 

Need for Research 

Scale-up and SMAR height. In sizing a SMAR, the volume and height 

are of concern (Dague, 1982). This brings up two questions. First, can 

the removal rate (g COO/L/d) obtained from pilot studies be directly used 

for scale-up in the determination of the full-scale SMAR volume? Second, 

what should be the depth for a given volume? Considering the effect of 

different biogas mixing intensity resulting from different reactor 

heights, these two questions are actually interrelated, since, in many 

cases, pilot SMARs are much shallower than the full-scale SMARs to be 

designed. The question is whether or not there is an optimal height for 

a given volume. 

Theoretically, higher hydrostatic pressures resulting from higher 

SMAR heights have both positive and negative effects on treatment 

performance. As shown in Equations (1) and (2), higher hydrostatic 

pressures increase mixing intensity and improve the contact efficiency 
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between substrate and organisms. Figure 3 shows the relationship between 

6 and SMAR height at various TCOO removal rates. Figure 3 Is plotted 

assuming: (1) a single blogasslng point at the bottom of the SMAR, (2) 

clean water density (not considering the sludge) for calculating P2, (3) 

a methane content of 70%, (4) pi of 1 atm, (5) at a temperature of 35° C, 

and (6) TCOD removal rates of 2, 6 and 12 g/L/d. 

On the other hand, higher SMAR heights tend to result in higher 

hydrogen partial pressures, which may inhibit methanogenesls, especially 

under heavy loading conditions. This can be calculated using the Lewis 

equation: 

AG = AGO - RT InQ (3) 

where, "AG^" is the standard Glbbs free energy change in J; "R" is the 

universal gas constant of 8.314 J/deg/mole; "T" is the absolute 

temperature in degree Kelvin; and "Q" is the reaction molar quotient. 

Figure 4 Illustrates the Glbbs free energy change (AG^) as a function of 

SMAR height at a range of hydrogen partial pressures of Interest, using 

propionate acetogenesls as an example: 

Propionate" + 3H20 Acetate" + HCO3" + 3H2 + H+ (4) 

AG® = +76.1 kJ/rxn 
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Figure 4 is plotted using: exit pCOz = 0.3 atm, CO2 Henry's constant = 

2230 atm (at 35° C), pKai » 6.31 for H2CO3 (at 35° C), pH = 7.0, and 

[Acetate"]/[Propionate"] • 0.5, for a range of pH2 = 0.5-2.0 x 10"* atm. 

Both Figures 3 and 4 suggest that SMAR height may be an important factor 

affecting treatment performance. However, this had not been 

experimentally studied. 

Dirty-bed tracer study. Biogas mixing can also affect SMAR 

hydraulic patterns. Young (1968) assumed an ideal plug flow in 

simulating the SMAR process according to clean-bed tracer studies. It is 

not well understood that, under operating conditions, how much dispersion 

and short circuiting could result from biogas mixing and biomass 

accumulation in the system. 

Methanogenic activity. Another question arises in applying the SRT 

concept to the SMAR process. Unlike the CSTR system, biomass 

distribution in a SMAR is highly heterogeneous. Consequently, biomass 

activity may also vary at different depths (Bull et al,, 1984). Although 

it is well known that the SMAR can achieve a very long SRT with a great 

amount of biomass accumulation in the system, there is a lack of 

information on the distribution of the biomass activity that actually 

occurs in situ. Also, methods and procedures involving the determination 

of the activity are not presently available for practical use. 

Rate-limiting st^. The question concerning what is the overall 

rate-limiting step in anaerobic digestion has frequently been asked and 

debated. It is generally accepted that acetate methanogenesis is the 
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overall rate-limiting step under normal digestion conditions treating 

non-polymer wastes (Zeikus, 1985). However, when digestion is upset and 

H2 partial pressure builds up, acetogenesis, especially of the low-carbon 

organic acids such as propionate and butyrate, may become the rate-

limiting step (Kaspar and Wuhrnann, 1978; Bryant, 1979). Finney and 

Evans (1975), however, claim that the detachment rate of the minute gas 

bubbles from the cell surface, which tends to block substrate transfer 

sites, is the limiting step. This was evidenced by a great increase in 

substrate removal rate under vacuum operations. 

Harper and Pohland (1987) studied the effect of biogas removal on 

treatment performance for the SMAR process. The biogas was removed at 

several intermediate points along the SMAR height. Their data clearly 

show that gas removal improves TOC removal even up to 10%. Their H2 data 

further suggest that the better performance was associated with the lower 

pH2 in the system. Podolak et al. (1984) also found that vacuum 

operation of an anaerobic rotating biological contactor (AnRfiC) can 

significantly improve the treatment efficiency, especially at high 

loading rates. 

It is questioned, however, why the fast growing H2-utilizing 

methanogens camnot rapidly remove the hydrogen while it is built up. It 

is hypothesized, in this study, that the H2 dissolution (from the gas 

phase into liquid phase) is the rate-limiting step and only the dissolved 

H2 can be directly used. The hypothesis is supported by the fact that H2 

gas is very insoluble (1.6 g/L at 25 o C) and strong mixing can greatly 

increase the H2 utilization rate by methanogens (Daniels et al,, 1984a). 
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Half-velocity constant. Another question which has not brought 

attention is the wide variation of Kg reported in literature for acetate 

methanogenesis. Lawrence and McCarty (1969) reported a Kg of 154 mg/L as 

acetic acid (HAc) for cheroostat cultures on acetate, while Wang et al. 

(1986) found that the Ks has to be 8.4 mg/L as HAc to accurately simulate 

their fluidized-bed (completely mixed) SMAR treating acetate. This might 

be due to difference in mixing intensity used in these two studies. The 

contact efficiency factor (*)) can be estimated of about 0.05 (8.4/154) as 

a result of inadequate mixing for the anaerobic system used by Lawrence 

and McCarty, assuming 8.4 is the true Kg. 

Interestingly, McCarty (1985), in a recent paper, has also addressed 

the problem of this high Kg value. In estimating the minimum 

concentration of substrate that can be achieved in a system at steady 

state, the following equation is used: 

Smin = kdKg/(Ykm-kd) (5) 

where, "Y" is the growth yield in gm substrate utilized/gm biomass 

produced and "ka" is the decay constant in 1/d. It was found that the 

calculated Smin for anaerobic treatment of domestic sewage, based on the 

data reported by Lawrence and McCarty (1969), was much higher than that 

achieved in pilot studies. This again indicates the inadequacy of the 

Monod model to account for differences in mixing intensity used in 

different studies. 
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Another reason that may further result in the high Kg value is the 

improper use of mathematical techniques in obtaining the value by 

linearizing the Monod equation and applying a linear least squares 

method. Kouadio (1984) has addressed this problem. When compared with 

the Kg obtained with a non-linear maximum likelihood optimization model, 

the Kg obtained with the linear models tend to be overestimated, even up 

to 60%. 

Purposes and Objectives 

Three pilot-scale SMARs were designed and operated using an enriched 

synthetic waste of powdered milk solution. The three SMARs have the same 

operating volume but different heights and diameters. Biogas production 

rate, methane content, COD, individual volatile acids, biomass 

concentrations, and acetoclastic methanogenic activity were determined 

under steady-state conditions at various organic loading rates. The 

major purpose of the study was to see whether difference in SMAR 

configuration could result in different treatment performance, due mainly 

to different biogas mixing patterns as a result of different hydrostatic 

pressures. This is thought to be an importeuit factor in process design 

and operation, especially at heavy loading conditions. 

The specific objectives of this study were: 

(1) To compare the steady-state treatment performance and biomass 

retention capability among the three different shapes of SMARs, in 

considering, specifically, the biogas mixing effects. 
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(2) To compare the hydraulic patterns among the three SMARs and to 

determine the effect of biogas mixing and biomass accumulation on 

short circuiting by conducting tracer studies under clean and dirty-

bed conditions. 

(3) To develop an activity test and use the test to determine the 

activity profiles for biomass obtained from various heights in the 

three SMARs. 

(4) To understand the relative importance of acetogenic pathways, as 

proposed in Wood scheme (9161), especially under heavy loading 

conditions, by determining the individual volatile acids at 

different heights in the three SMARs. 

(5) To substantiate the hypothesis that hydrogen dissolution is the 

rate-limiting step, as proposed in this study, by recycling the 

biogas under heavy loading conditions. 

(6) To propose a rational design procedure for the SHAR process based on 

the results of this study. 
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LITERATURE REVIEW 

Fundamentals of Anaerobic Digestion 

An anaerobic process is a series of biochemical reactions in which 

free molecular oxygen plays no part as an electron acceptor. 

Fermentation refers to any process in which only substrate level 

phosphorylation (SLF) is used by bacteria to obtain energy. Respiration, 

however, involves the use of electron transport phosphorylation (ETP) to 

obtain energy. Anaerobic digestion is a process of fermentation with the 

last step being respiration to methane. 

The methanogenic anaerobic system is an extremely complex system in 

which many trophically diverse groups of bacteria are Involved. Zelkus 

(1985) has classified these bacteria into four distinctive groups based 

on their trophic levels: Group I hydrolytic/fermentative bacteria, Group 

II H2-produclng acetogens, Group III homoacetogens, and Group IV 

methanogens. This is shown in Figure 5. Group II and III are usually 

referred to as the "syntrophic bacteria" to characterize their symbiotic 

relationship with the methanogens. 

The Zelkus scheme presents the current understanding of the 

anaerobic systems and is important in several aspects. First, it 

corrects the misconception that propionate can be directly used by 

methanogens, as previously believed (Barker, 1956; McCarty, 1964a; 

Andrews and Pearson, 1965; Lawrence and McCarty, 1969). Second, it 

details an over-simplified, two-stage (acid and methane formation) scheme 
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GROUP I 
HYDROLYTIC/FERMENTATIVE 

H9/CO, 

FORMATE 

ACETATE 

PROPIONATE 

BUTYRATE 

OTHER ACIDS 

ETHANOL 

OTHER ALCOHOLS 

GROUP III 
HOMOACETOGENS 

GROUP II 
HL-PRODUCING 

GROUP IV 
METHANOGENS 

CH./CO, 

COMPLEX ORGANICS 

ACETATE 

FIGURE 5. Schematics of anaerobic degradation, showing four levels of 
syntrophic groups, adapted and modified from Zeikus (1985) and 
Daniels (1984) 
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that was previously accepted (McCarty, 1964a). And third, it shows the 

syntrophic relationship between the acetogens and methanogens and the 

importance of hydrogen interspecies transfer in process control. 

The importance of species diversity in providing system stability in 

anaerobic digestion has been discussed by Zeikus (1985). The species 

diversity, as reflected in different physiological requirements for 

optimal growth, accounts for the process stability. However, the need, 

for species diversity leads to difficulty in process control in 

maintaining balanced growth rates and species populations for different 

groups of bacteria in anaerobic digestion. Table 1 shows the estimated 

maximum specific growth rate (wm, 1/day) and population density (in MPN, 

#/mL) for the five groups of bacteria most commonly found in successfully 

operated anaerobic sludge digesters. 

Fermentative Hydrolysis 

Organic compounds found in wastes are usually insoluble, high-

molecular weight polymers, such as polysaccharides, lipids, and proteins. 

For instance, the sludge produced from primary settling of sewage 

contains 8-15% cellulose, 6-30% lipids, and 20-30% proteins (USEPA, 

1979). In this case, hydrolysis has to be carried out to depolymerize 

these compounds into soluble, smaller molecules to allow for substrate 

diffusion into bacterial cells in which most of the reactions take place. 

Hydrolysis is carried out by a group of anaerobic or facultative bacteria 

using extracellular enzymes (exoenzymes). Energetically, hydrolysis is 

an irreversible reaction with a small decrease in free energy. 
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TABLE 1. Typical growth rates and population density for five 
groups of bacteria most commonly found in anaerobic 
sludge digesters 

Group 
(1/day) 

MPWb 
(#/mL) 

Reference 

Hydrolytic bacteria 
Total 
Proteolytic 
Cellulolytlc 

H2-producing 
acetogenic bacteria 
Cocultures 

Homoacetogenic 
bacteria 

Methanogens 
H2/CO2 
Acetate 

Sulfate reducers 

2.4 

0.1-0.2 
0.1-1.2 

1.4-8.3 
0.7 

0.3-0.7 

108-109 
107 
105 

106 

0.7-2.8 105-106 

106-108 

10* 

Zeikus (1985) 

Boone and 
Bryant (1980) 
Heyes and 
Hall (1983) 

Zeikus (1985) 

Zeikus (1985) 

Sorensen et al, 
(1981) 

^Maximum specific growth rate = 0.693/regeneration time, 

^ost probable number, from Zeikus (1985). 
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Polysaccharides are hydrolyzed to monosaccharides and then degraded 

to pyruvate via the Embden-Meyerhof-Parnas (glycolysis) scheme. Lipids 

are hydrolyzed to glycerols and fatty acids which are further fermented 

to pyruvate via 0-oxidation with 2-C reduction. Unsaturated fatty acids 

are saturated by hydrogénation. Long chain fatty acids such as stearate 

(18-C) and palmitate (16-C) may be important products for some 

fermentative bacteria (Chynoweth and Mah, 19711. Proteinaceous materials 

are fermentated to various a-amino acids which, in turn, are deaminated 

(with the production of NH3) to various fatty acids including 

isobutyrate, isovalerate, 2-methyl-butyrate, n-valerate, and various 

aromatic acids such as phenylacetate and indoleacetate (Barker, 1961). 

The rate of hydrolysis is highly dependent on the availability of 

exoenzymes that can be adaptive to a specific substrate. In their study 

of anaerobic digestion of urban organic refuse, Pfeffer and Liebman 

(1976) indicate that the hydrolysis of cellulose (g-linked hexose) is the 

overall rate-limiting step. Lignin found in pulping wastes is also 

recognized as having a very low hydrolysis rate, probably due to a low 

solubility. Novak and Carlson (1970) found that the degradation of long-

chain fatty acids is limited by ^-oxidation, not by dissolution. 

However, hydrolysis of compounds other than cellulose, lignin, or lipids 

is considered much faster and not to be the rate-limiting step in 

anaerobic digestion. 

The size of particles also plays an important role in determining 

the hydrolysis rate. Studies in anaerobic sludge digestion indicate that 
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materials larger than supracolloidal size (lOOwm) are essentially not 

degraded while the materials smaller than the supracolloidal size are 

effectively degraded (Levine et al,, 1985). It is explained that the 

greater surface resulting from a smaller particle size is essential in 

accelerating the exoenzymatic hydrolysis. Assuming that the majority of 

materials in sewage sludge is larger than supracolloidal size, hydrolysis 

can become the limiting step. 

Wood Scheme of Pyruvate Fermentation 

Pyruvate is the key intermediate product of the three primary 

polymers discussed above. Under aerobic conditions, pyruvate enters the 

TCA cycle emd ends at H2O and CO2. Under anaerobic conditions, pyruvate 

may undergo conversion via other metabolic pathways to various volatile 

acids. The general pattern of pyruvate fermentation have been presented 

by Wood (1961). Figure 6 shows Wood scheme for pyruvate fermentation, 

which was modified by Bryant (1979). Under Wood scheme, pyruvate can 

undergo three pathways via: (1) acetyl-CoA, (2) lactate and 

oxaloacetate, and (3) acetaldehyde amd acetolactate. The last pathway 

(alcohol fermentation), which is more important in the wine industry, 

will not be further discussed in this review. The first two pathways are 

important to this study and are detailed below. 

In the acetyl-CoA pathway, along with acetate, formate and H2/CO2 

are also produced, and can be readily used by methanogens. The acetyl-

CoA then ends as acetate, ethanol, and butyrate via acetoacetate. The 



www.manaraa.com

ACETALDEHYDE «* PYRUVATE OXALOACETATE 

2H SUCCINATE 

ACETOLACTATE LACTATE 

ACETYL-CoA 
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I 1= FINAL PRODUCT = EXTRACELLUAR INTERMEDIATE 

FIGURE 6. Wocxl scheme of pyruvate fermentation (Wood, 1961) 



www.manaraa.com

23 

acetyl-CoA pathway, which generates formate, H2/CO2, and acetate for 

methanogenesis is of. most importance in the anaerobic treatment of 

wastes. 

On the other hand, the pathway of lactate and oxaloacetate ends at 

propionate via either acrylyl-CoA or succinate. It has been found that 

cattle wastes contain a relatively high amount of lactate (6-7 % of the 

dry matter )j thus it may be an important substrate as well as an 

intermediate (Bryant, 1979). Succinate is also an important 

extracellular intermediate for some fermentative bacteria and is 

subsequently decarboxylated to propionate by syntrophic bacteria 

(Scheifinger and Wolin, 1973). 

Probably the most important implication of the Wood scheme is that 

it suggests a central role of H2 in controlling the proportions of the 

various products produced by fermentative bacteria. Bryant (1979) is 

probably one of the pioneering researchers who recognized this fact. 

Under normal operating conditions, nicotinamide adenine dinucleotide 

(NAD+) is generated with the production of H2 as follows: 

NADH + H+ H2 + NAD+ (6) 

NAD* serves as the electron carrier and is essential for the entire 

process to proceed. The H2 produced is directly used by methanogens 

and/or sulfate reducers. 
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Under overloaded conditions or conditions that do not favor H2 

utilizersr H2 builds up and retards the NAD+ regeneration via the H2 

production, as shown above. Instead, the regeneration of NAD'*' tends to 

shift to reactions which do not produce Hz, such as: 

4NADH + Acetyl-CoA •» Butyrate" + NAD+ (7) 

2MADH + Acrylyl-CoA Propionate" + NAD"*: (8) 

The result of this shifting is to increase the catabolism of pyruvate to 

other products, especially propionate, rather than acetate, CO2, or H2, 

as shown in Figure 6. Butyrate, valerate, and caproate may also increase 

and, in more extreme cases, ethanol and lactate may increase 

significantly. 

Characteristics of Syntrophlc Bacteria 

Degradation of volatile acids is performed by a group of syntrophlc 

bacteria, especially the acetogenic bacteria. This group of bacteria 

have very recently been studied (Mclnerney et ai., 1979; Mclnerhey and 

Bryant, 1981). Depending on whether or not H2 is produced, acetogenic 

bacteria can be grouped into two categories: homoacetogens and 

H2-producing acetogens. H2-produclng acetogens that utilize low-carbon 

fatty acids such as propionate and butyrate are most importeunt in this 

study. All of the H2-produclng acetogens studied so far can not grow 

alone amd require an obligate coculture with H2 utilizers such as 
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methanogens and/or sulfate reducers. The obligate association Is unique 

and Is explained In the following: 

Propionate" + 3H20 # Acetate" + HCO3" + H+ + 3H2 (9) 

AG® = +76.1 kJ/rxn 

Butyrate" + 2H2O # 2Acetate" + H+ + 2H2 (10) 

AG® = +48.1 kJ/rxn 

4H2 + HCO3" + H+ # CH4 + 3H20 (11) 

AGO = -135.6 kJ/rxn 

Propionate and butyrate acetogenesis are not thermodynamlcally possible 

unless they are coupled with H2/CO2 methanogenesis as follows: 

4Propionate" + 3H20 •» 4Acetate" + HCO3" + H+ + 3CH4 (12) 

AG® = -102.1 kJ/rxn 

2Butyrate- + HCO3' + H2O •» 4Acetate" + H+ + CH4 (13) 

AG® = - 39.3 kJ/rxn 

Brand and Markovetz (1984) have estimated that the maximum H2 

partial pressures (pH2) for the reactions to proceed are 1.25 x lO"* atm 

for propionate acetogenesis and 1.9 x 10"3 atm for butyrate 

acetogenesis, assuming pH = 7, 40 °C, 1 atm, and [Acetate"] = 

[Propionate"] = [Butyrate"]. This indicates that propionate acetogenesis 

is more sensitive to H2 buildup than butyrate acetogenesis. Under normal 



www.manaraa.com

26 

operating conditions, pH2 Is about 1-20 x 10"5 atm, depending on the 

loading conditions (McCarty and Smith, 1986). This is below the level 

that would result in the inhibition of propionate acetogenesis. Barnes 

et al. (1983), studying the anaerobic fluldlzed-bed process, reported 

that H2 partial pressure could reach up to 10"3 atm under shock loading 

conditions. Under these conditions, volatile acids can build up to a 

very significant amount. The consequence of the increased volatile 

acids, as occurs in digester failure, is to drop the pH, which can 

further stress the methanogens. 

Another group of syntrophlc bacteria do not produce H2. The group 

of bacteria found so far can use a wide variety of substrates including 

single-carbon compounds such as methanol, formate, carbon monoxide (Kerby 

et al., 1983); and methoxylated aromatic acids (Sache and Pfennig, 1981). 

Homoacetogens can use H2 and CO2 to form acetate. The importance of the 

reaction is not well understood, but likely playing the role of 

regulating H2 partial pressure in the system (Zelkus, 1985). In general, 

this group of bacteria require different conditions for optimal growth 

than do the methanogens. 

Kerby et al. (1983) have proposed a single-carbon catabolism model 

for acetogenic bacteria that synthesize acetate or butyrate (Figure 7). 

The model suggests that acetyl-CoA is the direct precursor of acetate and 

butyrate. This scheme also predicts that two distinct formyl-level 

Intermediates ([HCOOH] and [CO]) are linked by formate, CO2, and a 

carboxyl Intermediate of [CO2]. 
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CHoCHoCHoCOOH 

FIGURE 7. Single-carbon catabolism model for acetogenic bacteria that 
synthesize acetate or butyrate, showing acetyl-CoA is the direct 
precursor; Iiformate dehydrogenase, II:CO dehydrogenase and 
lII:formyl-THF synthetase (Kerby et al., 1983} 
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Nutrition of Methanogens 

The role of methanogens in the biosphere nutritional cycle was not 

clear until the pioneering works of Sohngen (1906) and Barker (1936). 

Today, we know that methanogens obtain their energy and carbon from only 

a few simple molecules, therefore primarily playing the role of degraders 

at the very bottom of the biosphere nutritional cycle. 

Energy and Carbon Sources Methanogens found so far can only use 

two types of substrates for their energy source. These substrates are 

either proton-bearing or methyl-bearing. The proton-bearing substrates 

include H2/CO2 and formate (HCOOH), and the methyl-bearing substrates 

include acetate (CH3COOH), methanol (CH3OH), and methylamines (CH3NH2, 

(CH3)2NH, and (CH3)3N). Methanogens, which use the same type of 

substrates, are proven to be more phylogeny-related (Balch et al,, 1979). 

Growth on CO is possible but slight, despite the high free energy of CO 

(Daniels et al., 1977). Table 2 shows these methanogenic reactions and 

their free energy. 

Virtually, all the methanogens studied so far can use H2/CO2 as the 

single energy and carbon source, except for six species. These species 

are Methanosarcina strain TM-1 (Zinder and Mah, 1979), Methanothrix 

soehngenii (Huser et al,, 1982), Methanolobus tindarius (Konig and 

Stetter, 1982), a coccus from human feces (Miller and Wolin, 1983a), 

Hethanococcoides methylutens strain TMA-10 (Sowers and Ferry, 1983), and 

Mc.^ acetivorans (Sowers et al,, 1984). It is interesting to note that 

Ito avoid confusion, the abbreviation scheme for genus names 
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TABLE 2. Reactions^ used by methanogenlc bacteria (Daniels et al., 
1984b} 

Reaction AGO AGO 
(kJ/rxn) (kJ/CH4) 

4H2 + C02 CH4 + 2H20 -138.8 -138.8 

4HC00H •» 3C02 + CH4 + 2H20 -119.5 -119.5 

4CH3OH -» 3CH4 + CO2 +2H20 -310.5 -103.5 

4CH3NH3+ + 2H20 3CH4 + CO2 + 4NH4+ -225.7 - 75.2 

4C0 + 2H20 •» CH4 + 3C02 -185.6 -185.6 

CH3COOH CH4 + CO2 - 27.6 - 27.6 

at 25 OC, 1 atm, and pH 7 in water. 
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some of than do use Hg as their energy source but require a carbon source 

other than CO2 such as methanol (Appendix A). 

Formate can also serve as the energy source for most methanogens 

capable of using H2/CO2. However, formate is not used by methyl-bearing 

substrate utilizers. A study has shown that formate, as a carbon source, 

requires an obligatory splitting to H2/CO2 for methanogenesis (Hungate et 

al., 1970). This may explain the phylogenic similarity between these two 

groups of methanogens. 

Besides H2/CO2 and formate, methyl-bearing substrates can also serve 

as the energy and carbon source for some methanogens, particularly the 

isolates from anaerobic digesters. Methanosarcina and Methanothrix 

species are the two groups of methanogens best known as methyl-bearing 

substrate utilizers. 

Some methanogens, especially the Ms, species, have been 

characterized as mixotrophic—being capable of obtaining energy from both 

proton-bearing substrates (autotrophic) and methyl-bearing substrates 

(heterotrophic). The best example is Ms. barker!. When grown on acetate 

alone, the Ms. species generates 80 % of the methane produced from 

acetate. However, when grown on acetate in conjunction with H2/CO2 and 

methanol, the methane percentage from acetate is inhibited to 42 % and 5 

%, respectively (Weimer and Zeikus, 1977). 

proposed by Daniels et al. (1984b) are adopted in this paper as follows: 
Methanobacterium (Mb.), Methanobrevibacterium (Mbr.), Methaaogeaium 
(Mg.), Methanospirillum (Msp.), Methanosarcina (Ms.), Methanococcus 
(MC.), Methanothrix (Mtx.), Methanoplanus (Mpl), Methanothermus (Mt.), 
Methanolobus (Ml.), Methanoccoides (MCC.), Methanomicrobium (Mm.). 
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Baresl et al. (1978) further pointed out that the Inhibition depends 

on the culture age grown on acetate. Their data show that 9-day cultures 

are inhibited 100% after a 168-hour exposure, while 1-day cultures can 

recover from 100% inhibition after a 24-hour exposure to only 37% 

inhibition when the exposure time is prolonged to 168 hours. More 

interestingly, their data also showed that the inhibition can be reduced 

by diluting the cultures. This might suggest that the SMAR system, which 

has a very long sludge age and highly concentrated blomass .In the system, 

Is more likely to be upset by an increase in hydrogen partial pressure. 

Methanogens which use methyl-bearing substrates are considered to be 

much slower growing than the proton-bearing substrate utilizers, probably 

due to a thermodynamic preference (Table 2). However, preference over a 

specific energy source may not only relate to its thermodynamic 

preference but also relates to enzyme specificity and the activated 

enzyme levels existing (Zeikus, 1985; Daniels et al, 1984b). 

Nitrogen and Sulfur Sources Methanogens, like other bacteria, 

require nitrogen for biosynthesis. Speece and McCarty (1962) suggested a 

chemical formula, C5H9NO3, for anaerobic growth on sewage sludge. This 

formula show a lower nitrogen percentage than C5H7NO2 for activated 

sludge suggested by Hoover and Forges (1952). 

It is well known that all methanogens can obtain their nitrogen 

source from NH4+. Recent studies demonstrate that Hethanosarcina barker! 

strain 227 euid Hethanococcus thermolithotrophicus, in addition, can fix 

N2 as the sole nitrogen source (Belay et al., 1985). However, 
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experimental data show that methanogens grown on H2/CO2/M2 yield fewer 

cells than those grown on H2/CO2/NH+* by about 2/3. This suggests an 

energy demand for using the N2 fixation pathway. Methanococcus 

thermolithotrophicus can also grow well on NO3" as the sole nitrogen 

source. 

Sulfur-containing compounds, such as Na2S and cysteine, have been 

used as sulfur sources and oxygen reductants in media preparation for 

anaerobic growth. Stetter and Gaag (1983) have, shown that a variety of 

methanogens from volcanic sources have the ability to use molecular 

sulfur as the electron acceptor (with the H2 as the electron donor) to 

form H2S in the dissimilatory sulfur reduction, especially for the 

thermophile Methanococcus thermolithotrophicus. They also found that 

competition between sulfur reduction and methanogenesis exists as a 

composite result of energy preference and H2S toxicity. 

Daniels et al, (1986) demonstrated that, in the preparation of 

culturing media, sulfide leads to full reduction; thiosulfate, elemental 

sulfur, and sulfite result in partial reduction; and sulfate does not 

reduce the medium at all. Traditionally, sulfide in the form of Na2S is 

used as the sulfur source in methanogenic studies. Viewing the problems 

associated with S~ depletion and H2S odor, they suggested a substitution 

of elemental sulfur, sulfate, sulfite, or thiosulfate as the sulfur 

source. It was also pointed out that preference and concentration 

requirements vary for different species of methanogens. 
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Taxonomy of Methanogens 

Barker (1956) proposed the first classification of methanogens and 

suggested that they be placed in one family, the Hethanobacteriacea. His 

suggestion was reflected in the 1974's edition of Sergey's Manual of 

Determinative Bacteriology (1974). The classification is based on the 

physiological and morphological characteristics of methanogens. 

Fox et al, (1977) found that the 16S rRNA^ of methanogens is 

distinct from microbes in Eubacteria-(Prokaryotes) and Eukaryotes, and 

proposed a new kingdom of "Archaebacteria". The name reflects an 

untested conjecture about their revolutionary status. Archaebacteria, in 

many aspects, are very different from the other two kingdoms. Among the 

most prominent features, the Archaebacteria lack muramic acid in their 

cell walls and contain ether-linked branched isoprenoid chains in 

membrane lipids. 

Based on the 16S rRNA sequence homologies, Balch et al. (1979) 

proposed a now widely accepted taxonomic scheme for methanogens. The 

scheme consists of three orders: Methanobacteriales, Methanococcales, 

and Methanomicrobiales. The new taxonomy reflects the consistency of the 

hierarchy with other classical characteristics including morphology. Gram 

stain, DMA base composition (mole % of guanine and cytosine), cell wall 

structure, cell membrane, and nutritional features for the methanogens 

considered at that time. 

Stands for the Svedberg unit, a measurement of the rate of 
sedimentation in an ultracentrifuge and hence an indirect measure of 
molecular size; 16S is about 1500 nucleotide long. 
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Based on Balch's taxonomy, Chiang (1985) has additionally tabulated 

some recent Isolates of methanogens with 3 order, 6 families, 12 genera, 

31 species, and 45 strains. This is shown in Appendix A. The history of 

the species, DNA base composition, energy source, maximum specific growth 

rate, and optimal growth conditions (pH, temperature, and NaCl) are also 

tabulated. Several important features can be observed in the Table as 

discussed below. 

The DNA base composition (G+C %) has been used to characterize many 

bacterial species. If two organisms have very different base ratios, 

they are obviously not closely related. As shown in Appendix A, base 

composition within genera shows a relatively narrow range for the three 

Orders. Order III on average has the highest percentage of G+C among the 

three Orders. Methanobacterium species show the largest variation in G+C 

percentage. Mb. wolfei, a tungsten-requiring thermophlle isolated from 

sewage digesters, shows an exceptionally high G+C%. A survey to find if 

methanogens from the same type of habitats have closer G+C values does 

not suggest any correlation. Chemical structure, rather than the G+C 

composition of DNA, is a more Important factor in determining proper 

enzyme functions in a specific habitat. 

As to optimal growth conditions, most methanogens can best grow at 

neutral pH, 30-40° C, and 1-2% NaCl. Exceptions are often habitat-

related. For example, the two unnamed Mb. species (strain Kuznetsov and 

strain Omeliansky), isolates from deep oil fields, require more than 14% 

NaCl for optimal growth. Seven species are labeled as thermophiles which 
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grow best, at temperatures higher than 55° C. They are Mb. 

thermoautotrophicum strain AH, Mb. wolf ex strain W, Mt. fervidus strain 

V24S, Mc. thermolithotrophicus strain SNl, Mc. jannaschii strain JAL-1, 

Mg. thermophiUcum, and Mg. frittony strain FR4. It is interesting to 

note that none of the above thermophiles uses acetate as the major energy 

source. This might suggest that the faster digestibility in thermophilic 

digesters is due to enhancement of these faster growing H2/CO2 

methanogens., 

Methanococcoides, Methanosarcina, Methanothrix, and Methanolobus of 

Order III represent the only groups found so far capable of using methyl-

bearing substrates as the major energy source. However, 

Methanococcoides, em isolate from deep sea, amd Methanolobus, an isolate 

from marsh ponds, do not use acetate as the energy source. Methanothrix, 

an isolate from sewage digesters, uses only acetate as the energy source. 

Methanosarcina represents the highest mlxotrophic nature, capable of 

using both proton- and methyl-bearing substrates as the energy sources. 

For this reason, the optimum growth conditions for Methanosarcina are 

difficult to define. 

As shown in Appendix A, all the groups capable of using methyl-

bearing substrates have slower maximum growth rates than do the proton 

utilizers. This might be ascribed to lower free energy in methyl-bearing 

substrates. However, this does not imply that the methyl utilizers have 

less efficient growth. This will be discussed in more detail below. 
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Continuous Culture Theory 

Continuous culture theory relates to the continuity of energy flow 

occurring in a metabolic process. It is a theory of energy conservation 

In biological systems, i.e., bacterial cells in this study. The major 

questions in continuous culture theory are three: 

(1) What are the mechanisms Involved in the energy conservation process, 

such as ATP formation, electron transport system? 

<2) What Is the energy capture efficiency of bacteria cells, such as the 

cell growth yield? and 

(3) What is the electron (energy) transport rate, such as the kinetics 

of cell growth rates. 

Classical thermodynamics has been used for years to study the 

energetics of anaerobic systems (McCarty, 1969; Thauer et al., 1977). 

However, there are several limitations in applying thermodynamics to 

bacterial systems. First, bacterial cells are open systems while 

classical thermodynamics deals with closed systems. Therefore, a more 

defined cell boundary is necessary. Second, the energy flow in a cell is 

highly dependent on a specific pathway that is regulated by enzymes, 

while classical thermodynamics deals with only the energy flow 

disregarding the pathway. And third, classical thermodynamics deals with 

only steady-state conditions disregarding kinetics. 

Electron and Carbon Transport in Methanogens In the following, 

major electron and carbon transfer reactions for methanogens are 

discussed. For a more detailed discussion, the paper by Daniels et al. 
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(1984b) Is suggested. How the methanogens obtain their energy for cell 

synthesis and methanogenesis has been of great interest. More knowledge 

in this area r«nains to be documented. 

Figure 8 shows a now widely accepted electron transport model for 

methanogens. The model proposes a central electron pool of F420f a 

8-hydroxy 5-deazaflavin cofactor, accepting electrons from energy 

sources. F420 has been found in all methanogens isolated so far with a 

level of approximately 1.1-4.7 nmol/mg protein. One group of non-

methanogenic bacteria, Streptomyces species, also contains F420 but at a 

much lower level. Like other deazaflavins, F420 is chemically restricted 

to 2-electron transfers. It is not clear if F420 Is bound to proteins in 

cells or freely diffuses. 

As shown in Figure 8, various electron-transfer enzymes are required 

to liberate electrons from energy sources. These include hydrogenase, 

formate dehydrogenase, emd CO dehydrogenase. These enzymes can reduce 

F420 to provide reducing power for cell synthesis and methanogenesis. 

NADP, rather than NAD, is specifically reduced by F420 to form NADPH 

using the NAOP-F420 oxidoreductase. The enzyme catalyzes the reduction 

of NADP optimally at a pH of about 8, and in the opposite direction at a 

pH of about 5. The enzyme is estimated to be about 0.09% of the protein 

in the cell. Zinc is associated with the enzyme. 

As to methanogenesis, CoM serves as a carbon transfer cofactor in 

the last step of methanogenesis. The methyl CoM reductase is used to 

catalyze the reaction. The reductase is the most abundant enzyme found 
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+. 2H 

2E" 
NADPH 

2E" 420 

NADP 2H«0 + 20H" + 2H 

2E" HCOOH 

2E-

FIGURE 8. Major electron transfer reactions for methanogens (1) 
Hydrogenase (2) Formate dehydrogenase (3) NADP-F420 
oxldoreductase (4) Methyl CoM reductase (5) CO dehydrogenase 
(Daniels et al., 1984b) 
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SO far In methanogens, at a level of 3-12% of the cell protein. The 

catalysis requires Mg:ATP for activity. The activity is fully inhibited 

by several compounds including chloroform, azide, and nitromethane, but 

not by CO, cyanide, nitroxide, or dithionite. CO2 can act as a positive 

effector. However, Hans son and Molin (1981) has reported that CO2 

partial pressure can strongly retard propionate acetogenesis. The 

retardation can be up to 70% at a pC02 of 1 bar (0.99 atm). 

In the methanogenesis from methyl-bearing substrates (methanol, 

acetate, and methylamines), splitting of CHg" requires an intermediate 

complex of B12 corrinoids. The assimilation of cell carbon in 

methanogens is virtually through a reverse TCA cycle. 

Figure 9 shows a now widely accepted ATP generation model for 

methanogens. According to the chemiosmotic theory, ATP is generated by a 

protonmotive force (Ep) across the cell membreme as follows: 

Ep = EpO - 2.3(RT/F)(ApH) (14) 

Ep = EpO - 61(ApH) at T = 35 °C (15) 

where, "F" is the Faraday constant, or 96.493 J/mv; "R" is the universal 

gas constant, or 8.314 J/degree/mole; "T" is the temperature in Kelvin; 

/^pH is the pH difference between inside and outside of the cell; and 

"Ep°" is the potential inside the membrane at standard conditions in mv. 

Currently, there are three different perceptions concerning the 

extrusion that protons in methanogens carry out electron transport 
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CHARGE SEPARATION 

H + OH ^ HgO 

FIGURE 9. Chemlosmotic generation of ATP for methanogens (Daniels et 
al., 1984b) 
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according to the Mitchell hypothesis. The traditional view suggests a 

clearcut separation of protons outside the membrane so that all the 

protons are readily exchangeable with bulk water. The more recent views 

are that the protons are either associated on or in the membrane, and are 

not readily exchangeable to the bulk water. 

It was not possible to prove the chemlosmotlc theory until EpO can 

be experimentally determined. The EpO was determined to be 120-140 mv in 

Mb. thermoautotrophicum (inside alkaline and negative). The theory is 

also supported by a recent finding that, in H2/CO2 methanogenesis, the 

'H' on the produced methane arises from the protons in water, not from 

the H2 substrate as previously thought. 

Energetics and Bacterial Growth In a well defined system, the 

relationship of bacterial growth (dX/Xdt) and substrate utilization 

(dS/Xdt) can be described as follows: 

js? ' iit "•  ̂ (16) 

where, "S" and "X" are the concentrations of substrate and biomass, 

respectively, in mg/L; "Yna" is the true yield coefficient in mg biomass 

produced per mg substrate utilized; and "kj" is the first order decay 

rate constant in 1/day. The decay may occur through death, lysis, 

endogenous metabolism, prédation, as well as energy utilization for 

maintenance (such as respiration). The kg typically ranges from 

0.01-0.05 1/day in mixed culture. The true yield (Ym) is different from 

the net yield (Y) as follows: 
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Y = Ym/d+kd^c) (17) 

Equation (16) states the law of continuity In the bacterial system 

and can be expressed In a more general form as follows: 

where, "m" Is the specific growth rate In mg blomass produced/mg blomass 

in the system/day, and "k" Is the specific substrate utilization rate, In 

mg substrate utlllzed/mg blomass In the system/day. For a completely 

mixed system, the above equation can be related to solids retention time 

(SRT, 6c) or mean cell residence time (MCRT) as follows: 

The above equation can be used for a system with or without blomass 

recycling. 

In anaerobic systems, volatile solids (VS) or volatile suspended 

solids (VSS) are often used as measures of blomass, and chemical oxygen 

demand (COD) as the measure of substrate. This should be cautiously 

Interepreted, since not all the VS or VSS are viable and not all the COD 

is biodegradable. Blomass can also be estimated by turbidity with a 

spectrophotometer at a wavelength that gives a maximum reading, as often 

used by microbiologists in pure culture studies. A correlation between 

blomass concentration and turbidity reading can then be used. 

* = Ymk - kd (18) 

l/*c = Ymk - kd (19) 
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Lawrence and McCarty (1969) estimate biomass by measuring the 

nitrogen content (mg) of VSS and multiplying the nitrogen content with a 

conversion factor of 11.4 mg VSS/mg cell nitrogen obtained by Speece and 

McCarty (1962). This may greatly increase the accuracy of biomass 

estimation since the nitrogen content can be determined with better 

precision. However, none of the methods discussed above can 

differentiate between viable biomass and dead biomass. 

Equation (18) has been modified to include biomass activity as 

follows : 

Young (1968) 

u = eYmk - kd (20) 

Grady and Lim (1980) 

tf = Ymk - 7 - b (21) 

In Young's expression, "e" is the active fraction (about 0.8) of biomass. 

In Grady and Lim's model, biomass is separated into viable and dead 

cells. The purpose of the separation is that viable cells may undergo 

death (7) and decay (b) while the dead cells only undergo decay. The 

separation is desired when a precise analysis is needed. However, this 

may complicate data analysis. 

To obtain Yn and k<j. Equation (19) is often directly used by 

plotting "l/^c" against "k". In a completely mixed system at steady 

state without biomass recycling, l/9c and k can be determined as follows: 
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UBc = 1/r (22) 

k = (S - So) / (Xr)  (23) 

where, "S" and "So" are the substrate concentration In the reactor and 

Influent concentration, In mg/L respectively; and "r" Is the hydraulic 

detention time In day. The direct plot of using Equation (19) has been 

criticized as being insensitive to system parameters (Ym and Kd) due to 

the reciprocal of r. Instead, the Jordan plot (Grady and Llm, 1980) is 

preferred: 

The above equation can be derived by substituting Equations (22) and (23) 

into Equation (19). By plotting (So-S)/X against r, Equation (24) gives 

a slope of kd/ym and y intercept of 1/Ym« 

Growth yield coefficients (Ym or Y) of some selected fermentative 

and methanogenlc reactions for both pure and mixed cultures are listed in 

Appendix B. In most pure culture studies, the optical (turbidity) method 

is used as a direct measure of blomass. This would give the Y (net 

yield) measurement with no kg determination. For those listed with kd, 

the yield is the Ym (total yield) and either Equation (19) or (24) was 

used. 

Jordon plot 

(So-S)/X = (kd/Ym)r + 1/Ym (24) 
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The yield is expressed as gram biomass produced/electron equivalent 

of substrate utilized. The use of electron equivalent for energy 

substrates provides a wider basis than does COD of substrate (McCarty, 

1969). Substrate expressed in electron equivalents can be converted to 

COD using an equivalent of 1/8 g COD per electron equivalent (e). In 

order to justify the energy capture efficiency by bacteria, the ratio of 

Yn/ÀG^ is calculated. The ratio estimates the gram of biomass produced 

per kcal of free energy of substrate utilized. A higher Ym/AGP ratio 

indicates a better energy capture efficiency by the cell. 

As shown in Appendix B, growth yield varies over a wide range from 

3.68 to 0.14 g/e, depending upon the type of reactions and the type of 

bacteria. In general, the yield and Yn/AG^ for pure cultures are in 

close agreement with those for mixed cultures as shown for H2/CO2 and 

acetate methanogenesis. 

In the group III reaction of homoacetogenesis, homopropionogenesis, 

and homobutyrogenesis, insufficient data were available to make a general 

conclusion. This group of bacteria do not produce H2 and can be cultured 

without a syntrophic association with the H2 utilizers. Mixed culture 

studies of this group might not be feasible unless their biomass can be 

differentiated from the total biomass. Comparisons between A. woodii and 

P. modestum suggest that energy capture efficiency is greater for 

reactions with less free energy. The two listed values of Ym/AG^ are 

among the higher values in Appendix A, suggesting that this group of 

bacteria can grow well and are not likely to be the limiting species in 

anaerobic digestion. 
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In the group of methanogens, reactions with greater AG°, in general, 

give greater yield but less energy capture efficiency. Organic 

supplements can greatly increase the yield as shown in acetate 

methanogenesis by Ms. barkeri. It is noted that Ms. barkeri, which is 

the predominant species in anaerobic digestion of organic wastes, yields 

twice more on H2/CO2 than on acetate. Also, the yield differs remarkably 

for different species that use the same reaction. It appears that Mtx. 

soehngenii, which uses only acetate, has a less efficient growth. On the 

average, acetate utilizers yield about 0.2-0.4 g/e with a capture 

efficiency of 0.2-0.4 g/kcal. 

Kinetics and Growth Rate The Monod (1949) equation is often used 

to describe bacterial growth kinetics as follows: 

tx =wm S/(Ks+S) (25) 

where, "wm" is the maximum specific growth rate in mg biomass produced/mg 

biomass/d; and "Kg" is the half-saturation constant, in mg substrate/L. 

Another expression often used to describe bacterial kinetics is the 

Michaells-Menten equation: 

k a km S/(Ks+S) (26) 

The Michaelis-Menten equation is similar to the Monod equation, but 

expresses the bacterial kinetics in terms of substrate utilization. The 
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"Kg" has been characterized as the "required driving force" to achieve 

1/2 of the maximum specific growth rate (Mm) or specific utilization rate 

(kffl). Factors such as the nature of cell membranes, biomass 

concentration, and mixing intensity all can greatly affect Kg. 

Contois (1959) noticed that, in addition to substrate concentration 

(S), the biomass concentration (X) is also a function of the specific 

growth rate (m). He further proposed a kinetic model as follows: 

M = MmS/(BX+S) (27) 

where, "B" presents a growth parameter that is constant under defined 

conditions. The Contois equation has the same mathematical form as the 

Monod equation with a hyperbolic function with respect to "S". The 

Contois model has been intensively evaluated experimentally using 

Aerobactor aerogenes and proven to have general applicability. However, 

unlike Monod kinetics, which can be derived from fundamentals of 

enzymatic reactions, Contois kinetics lacks a theoretical background. 

On the other hand, Contois kinetics suggests an Important fact that 

"BX", which is equivalent to "Kg" in Monod kinetics, increases as biomass 

concentration (X) increases. This agrees with the modified Monod 

kinetics by Oague and Chiang (1984), which states that "operating Kg 

(Kg/?))" increases as contact efficiency factor (*)) decreases due to a 

decrease in mixing intensity by an increase in biomass concentration: 

k = km Sb/(Kg/7j+Sb) (28)  
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where, Sb refers to the substrate concentration In bulk solution. 

Equation (28) can be obtained by substituting S = nSb into Equation (26). 

To obtain the Monod constants (Mm and Kg), Equation (25) is often 

linearized so that linear least-squares optimization can be used. Three 

forms of linearization are often used (Grady and Lim; 1980): 

Lineweaver-Burk Plot 

Hanes plot 

1/r + kd Mm Mm 

Hofstee plot 

^ (30) 

^ ^ - (1/r + kd) (31) 

The proper use of the above linearization models is important in 

obtaining accurate Monod constants. The double reciprocal Lineweaver-

Burk plot gives a deceptively good fit, even with unreliable data. This 

should be avoided in any event. If the line is to be drawn by eye, the 

Hemes plot is preferred. However, the least-squares technique cannot be 

used to find the line of best fit because both axes contains a term 

(i.e., S) which is subject to error. If the least-squares technique is 

to be used, the Hofstee plot should be used. The use of the reciprocal 



www.manaraa.com

49 

Of "S" may amplify the error in "S" and make it difficult to get a line 

by eye (Grady and Lim, 1980). 

It should be known that any form of linearization will inevitably 

cause error in the estimation of Monod constants (Cornish-Bowden and 

Eisenthal, 1974). Kouadio (1984) has developed a very rigorous 

mathematical model to estimate the two Monod constants (wm* Kg), yield 

(Ym), and decay (kj) coefficients, using a maximum likelihood 

optimization technique. The results of his study indicate that any 

linear least-squares methods tend to overestimate wm and Kg, sometimes 

even up to 60%, and slightly underestimate ka and Ym. Kouadio also 

suggested that if the linear least-squares method has to be used, the 

Jorden (Equation 24) and Hanes (Equation 30) plots should be used. 

Appendix B also shows Kg and am data for some selected fermentative 

and methanogenic reactions. For those studies with no Kg listed, wm is 

calculated either from the slope of the exponential growth phase or from 

the regeneration time (tr) as follows: 

Mm = ln2/tr (32) 

The above equation can be derived with a zero-order growth assumption. 

Also, as listed in Appendix B, the ratio of wm/Ym gives the electron 

transport rate (e/g biomass/d). This is equivalent to the expression for 

the maximum specific utilization rate (km). 
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In general, jum ranges from 0.2 to 1.2 1/d and electron transport 

rates from 0.2 to 3.0 e/g/d. As expected, methanogens that use H2/CO2 

transport electrons at a rate about five times faster than those using 

acetate. Data from Finney and Evans (1975) show a exceptionally high 

transport rate among acetate utilizers. The data were obtained under 

vacuum conditions (13.2% atm). Based on this, they suggested that the 

CO2 detachment rate from the blomass is the overall limiting step, which 

can be accelerated under vacuum conditions. 

The Kg shown in Appendix B is in least agreement among all studies. 

This is probably due to the difference in mixing intensity, operating 

blomass concentrations, and mathematical handling techniques among 

different studies. The Kg varies remarkably with different substrates 

and temperatures used. For example, simple compounds such as acetate 

give lower values than do complex compounds such as lipids. Lower 

temperatures tend to give higher Kg values, indicating a higher required 

driving force at lower temperatures. 

System Controls and Monitoring 

Solids Retention Time The concept of solids retention time (SRT) 

has been used as an unified control parameter in design and operation of 

biological processes for years. Under steady-state conditions, the SRT 

of a system can be defined as follows: 
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The above definition is virtually based on hydraulic considerations. 

However, under steady-state conditions, biomass regeneration rate equals 

biomass wasting rate; thus SRT can be related to the mean cell residence 

time (HCRT), which is a biological index, as shown in Equation (19). 

An adequate SRT is essential for successful treatment. For 

anaerobic systems treating sewage sludge at 35° C, Dague et ai. (1970) 

observed a minimum SRT of 10 days for efficient treatment and no waste 

stabilization at 3 days. Parkin et ai. (1983) studied the effect of four 

toxicants (nickel, ammonium, sulfide, and formaldehyde) on anaerobic 

systems. They concluded that the toxicity effect can be greatly reduced 

by using a sufficiently long SRT. Studies on the dewaterability of 

digested sludge by Lawler et ai. (1986) also show that, in addition to 

solids stabilization, digesters should be designed to obtain a good 

dewaterability of digested sludge with an adequate SRT. 

An adequate SRT can be achieved in several ways. For a completely 

mixed system without biomass recycling, SRT equals hydraulic retention 

time (HRT). SRT can be increased to greater than the HRT by recycling 

biomass after separation to increase the total biomass in the system. 

The concept brought up the development of "anaerobic activated sludge" 

(Dague et al., 1966). 

With the development of many modern high-rate anaerobic processes, a 

very long SRT can be achieved within a relatively short HRT. Young and 

McCarty (1969) reported an SRT of over 500 days for an anaerobic filter 

treating dilute organic wastes at 25° C. The use of the extremely long 
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SRT makes possible the treatment of the dilute waste at low temperatures. 

Also, with the extremely long SRT, the system can be operating In the 

endogenous phase with low net solids production, as shown in Equation 

(17). 

However, there are several limitations to applying the SRT concept 

to modern high-rate anaerobic processes. Such processes are 

characterized by a highly non-uniform distribution of biomass activity in 

the system. As a result, SRT based on biomass alone can not fully 

estimate the treatment capability of a system. More importantly, the use 

of an extremely long SRT in the modern high-rate processes makes the 

parameter insensitive as a control index as in the conventional and 

contact anaerobic processes. 

Another aspect of using SRT as a design parameter is the scale-up 

problem. By directly applying the the lab-scale SRT to full-scale 

systems, it is assumed that the biological similarity is the same as the 

hydraulic similarity between the lab-scale and full-scale system. 

Unfortunately, this may not be the case. Many full-scale anaerobic 

systems are operated under much higher hydrostatic pressures than are the 

lab-scale systems, such as 40 ft (12 m) vs. 0.5 ft (0.15 m). Morgan 

(1954) and Torpey (1955), in studying the anaerobic treatment of sewage 

sludge, noticed that lab-scale digesters can successfully operate at 

loading rates at least three times those commonly accepted for design of 

full-scale digesters. The scale-up problem has not been well understood. 
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PH, Alkalinity# and Volatile Acids One of the most important 

environmental requirements for anaerobic digestion is a proper pH. 

Previous studies concluded that anaerobic digestion proceeds well at pH 

6.6-7.6 with an optimum range of 6.8-7.2 (McCarty, 1964b). Since most 

acetogens can grow well under more acidic conditions, the primary 

consideration of pH is for optimum growth of methanogens (Appendix A). 

Also, in many cases, the pH consideration is associated with the toxicity 

of NH3 and H2S. The pH effect on the production of these two toxic forms 

are opposite. High pH is associated with high NH3 while low pH is 

associated with high H2S. 

Despite its importance, pH appears to be an insensitive control 

index and cannot be used for early detection of digester failure (USEPA, 

1976). As a digester fails, with a gradual increase in volatile acids, 

pH might remain relatively constant for a period with the consumption of 

bicarbonate alkalinity. 

The maintenamce of am adequate alkalinity in anaerobic systems is 

important for process control. However, the choice of a suitable 

titration endpoint for alkalinity determination has been a constant 

debate. For routine monitoring, Standard Methods (1985) suggests a pH of 

4.3 as the titration endpoint while the USEPA Anaerobic Sludge Digestion 

Memual (1976) uses 4.5. In the method of dual titration (DiLallo and 

Albertson, 1961), a pH of 4.0 was chosen. 

Nevertheless, the importance of a meaningful alkalinity measurement 

is to provide insight into how much buffering capacity a digestion system 
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can provide at a desired operating pH. Many volatile acids have pkA 

values above 4.5 (for example acetic acid 4.76 and propionic acid 4.85). 

Consequentlyf these volatiles, which are not normally considered as 

buffers In digester operation, will also be Included in the alkalinity 

measurement when endpolnts are below 4.5. For this reason, it is 

necessary to differentiate the useful bicarbonate alkalinity (BAlk) from 

the the less useful total volatile acids (TVA) alkalinity (McCarty, 

1964b) : 

BAlk = TAlk - (0.85)(0.83)(TVA) (34) 

where, "BAlk" and "TAlk" are the bicarbonate alkalinity and total 

alkalinity, respectively, in mg/L is CaCOa; and "TVA" is the total 

volatile acid determined by the steam-distillation method (Standard 

Methods, 1985) in mg/L as acetic acid; and "0.83" (50/60) is a factor to 

convert the acetic acid equivalent of "TVA" to the CaCOa equivalent of 

alkalinity. Use of the above equation assumes that only 85% of the TVA 

(determined by the steam distillation method) is measured in TAlk 

titration to pH 4.0 (McCarty, 1964b). 

Due to the tedious procedure involving the determination of the 

volatile acids, Jenkins et ai. (1983) have suggested a "alkallmetrlc 

titration method" for estimating BAlk. The method uses a titration 

endpoint of pH 5.75 as a direct measurement of BAlk. The method assumes 

that, for normal sewage sludge digesters, 80% of bicarbonate and less 

than 20% of volatile acids are titrated at pH 5.75. 
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In considering a sensitive Index for digestion process control, 

USEPA (1976) proposed the use of TVA/TAlk ratio. When digestion starts 

to fall, the TVA will build up with a possible decrease in TAlk. This 

will tend to exagerate theT VA/TAlk ratio even in the early stages of 

process failure. The TVA/Talk ratio between 0.1 to 0.25 (in mg/L as 

acetic acid per mg/L as calcium carbonate) has been considered to be 

necessary for successful digester operation. This ratio simply suggests 

that, in order to neutralize 1 equivalent of volatile acids, 5 to 12 

equivalents of alkalinity should be maintained in the system for 

successful digester operation. 

DlLallo and Albertson (1961) have developed a now widely used 

volatile acids method by direct titration. The sample is first titrated 

with H2SO4 solution to pH 4 for TAlk measurement. The sample is further 

acidified to a pH of 3.3-3.5 and gently boiled for 3 minutes to remove 

the CO2 resulting from the acidification of bicarbonate. After cooling 

to room temperature, the sample is then back-titrated to pH 7.0 with NaOH 

solution to determine the TVA. With the dual titration method, the 

TVA/TAlk ratio can be obtained in 30 minutes. However, this method has 

been criticized because Inconsistent boiling leads to the method lack of 

reproducibility. 

Ripley et al. (1986), recognizing the Importance of alkalinity 

between pH 4.3 and 5.75, suggest the use of a "IA/PA" ratio. The lA 

stands for the intermediate alkalinity which is equivalent to the TVA 

alkalinity determined between pH 4.3 to 5.75. The PA stands for the 
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partial alkalinity which is equivalent to the bicarbonate alkalinity with 

the titration endpoint of pH 5.75, as suggested by Jenkins et al, (1983). 

The lA/PA ratio is considered more sensitive than the TVA/TAlk ratio 

suggested by USEPA because the buildup of TVA may result in a TAlk 

increase too. The lA/PA ratio can be obtained with only one titration in 

a few minutes. In addition, there is no need to boil the sample and 

standardize the titrant, as required in the dual titration method. 

Static-Bed SMAR Process 

Applications 

Applications of the static-bed SMAR process are primarily for 

pretreatment of high-strength organic wastes. Pilot-scale studies over 

the past 20 years have shown that the SMAR process is capable of 

efficient pretreatment of a wide variety of wastes at high loading rates 

and at short retention times. The system is also capable of intermittent 

operation and shock loadings. The net growth yield (Y) is generally very 

low, i.e., 0.015 g VSS/g COD removed for treating volatile acids and 0.12 

for treating protein-carbohydrate wastes (Young and McCarty, 1969), as 

compared to the conventional and contact processes, i.e., 0.05 for 

treating volatile acids and 0.24 for treating carbohydrate wastes 

(McCarty, 1964a). The SMAR process has also proven to be capable of 

treating wastes containing organic priority pollutants, such as hydroxyl 

and methoxyl benzenes. In many aspects, the SMAR is an "ideal" process 

for the pretreatment of organic wastes. 
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Table 3 lists five categories of complex organic wastes that have 

been studied using the static-bed SMAR process. This includes food-

processing carbohydrate wastes, pharmaceutical wastes, thermal sludge 

conditioning wastes, dairy wastes, and landfill leachates. Two studies 

on simple synthetic wastes are also listed for comparison. Total COO 

(TCOD) removal rate (g/L/d) and theoretical retention time (hours) are 

based on clean-bed liquid volume. TCOD, instead of soluble COD, is used 

to include the consideration of solids retention ability of the SMAR 

process. Clean-bed liquid volume is used so that comparison in TCOD 

removal rate and hydraulic retention time with different media porosity 

in different studies can be more meaningful. Unless specified, TCOD 

removal rates are calculated only for those runs achieving 80% or better 

TCOD removal efficiencies. 

In the category of carbohydrate waste (Table 3), a food-processing 

waste was treated by Plummer et ai. (1969). The waste was characterized 

with a COD of about 8.5 g/L and low solids, an ideal waste for the SMAR 

process. The SMAR used was packed with a mixture of Raschig rings and 

berl saddles which resulted in a porosity of about 0.7. The TCOD removal 

rate was 2.2 g/L/d at a retention time of 83 hrs and temperature of 35° 

C. The TCOD removal rate is similar to the rate for the more complex 

flour-processing starch waste treated by Mosey (1978) and the simpler 

synthetic protein-carbohydrate (nutrient broth and glucose) waste of 

Young auid McCarty (1969). It can be generally concluded that 

carbohydrate food-processing wastes can be efficiently treated at a TCOD 

removal rate of 2-3 g/L/d within a retention time of 80-90 hrs. 
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One vegetable tanning waste, containing high lime solids (20 g TS/L) 

and COD (16 g/L), was treated at a high COD loading rate of 16.0 g/L/d 

with a COD removal rate of 13.8 g/L/d (Arora and Chattopadhya, 1980). 

Doubling the loading rate resulted In almost a doubling of the removal 

rate, Indicating the system was not overloaded. Solids were "captured" 

In the system at a rate as high as 30 g TS/L/d with a retention time of 

12 hours. In spite of the low-poroslty media used, no clogging problem 

was reported. This seems to extend the SMAR application to wastes 

containing high solids, which were not previously thought treatable with 

the SMAR process (Young and McCarty, 1969). 

For the treatment of pharmaceutical wastes with the SMAR process, 

two studies are tabulated In Table 3. Both wastes are rich In methanol 

(95% of total COD) which can be readily used by methanogens. However, 

they were very different In pH. The waste treated by Jennett and Dennis 

(1975) was slightly basic and the other was extremely acidic (pH 1.5). 

Both wastes are short of nitrogen and phosphorus nutrients. 

Consequently, pH adjustment and nutrient supplements were required for 

successful treatment. Surprisingly, the reported TCOD removal rates for 

these two pharmaceutical wastes differed remarkably. 

The waste treated by Jennett and Dennis (1975) had a TCOD removal 

rate of 5-8 g/L/d which Is 3-6 times the removal rate for the waste by 

Sachs et al. (1982). The difference Is partly due to the different 

Influent COD concentrations, as shown In Table 3. Closer examination 

reveals that the waste of Sachs et al. Is high In sulfate (1.4-3.5 g/L). 
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TABLE 3. Treatability^ of some selected organic wastes by static-bed SMARs 

Wastes (% Tab 
(hours) 

TCODrb 
(g/L/d) 

Tanp 
(^ 

porosity 
(-) 

Simple synthetic wastes 

Methanol 2.1 12 3.8 25 0.40 
Methanol+Acetate 2.4 12 4.0 25 0.40 
Meth. +Acet. -^propionate 2.7 12 4.5 25 0.40 
Meth.+Acet.+Propionate 2.2 6 8.5 25 0.40 
Acet. -i-propionat e 2.2 6 7.4 25 0.40 

Acetate+propionate 6.0 18 7.0 25 0.42 Acetate+propionate 
6.0 36 4.0 25 0.42 

Acetate+Propionate 3.0 36 1.9 25 0.42 

Complex wastes 

Food processing 8.5 83 2.2 35 0.68 

Flour processing 10.0 96 2.3 35 0.90 Flour processing 
18.0 96 3.7 35 0.90 

Nutrient broth+ 1.5 18 1.9 25 0.42 
Glucose 3.0 36 1.8 25 0.42 

Vegetable tanning 16.0 144 2.4 22-33 0.42 
16.0 96 3.6 22-33 0.42 
16.0 72 4.4 22-33 0.42 
16.0 48 6.5 22-33 0.42 
16.0 24 13.8 22-33 0.42 
16.0 12 28.8 22-33 0.42 

References 

HcCarty (1966) 

Young & McCarty 
(1969) 

Plummer 
et al. (1969) 

Mosey (1978) 
Mosey (1978) 

Young & McCarty 
(1969) 

Arora & Cha-
ttopadhya (1980) 

aTCOD removal equal to or greater than 80% (unless specified). 

^Based on clean-bed liquid volume. 

CTCOD removal less than 80%. 
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Table 3. (continued) 

Wastes 
Tdb 

(hours) 
TCODrb 
(g/L/d) 

Team 
(OCT 

porosity 
(-) References 

Pharmaceutical 4.0 18 5.1 35 0.44 Jennett & 
4.0 12 7.5 35 0.44 Dennis (1975) 
8.0 24 7.6 35 0.44 
16.0 48 7.8 35 0.44 

Pharmaceutical 2.0 36 1.3 35 0.43 Sachs et al. 
(1982) 

Thermal sludge 20.1 32 6.9C 35 0.90 Dague et al. 
conditioning 20.1 64 3.8C 35 0.90 (1980) 

Thermal sludge 6.0 6 16. OC 35 0.90 Crawford 
conditioning 6.0 12 8.9c 35 0.90 et al. (1980) 

Thermal sludge 9.5 32 3.6C 32 0.43 Haug 
conditioning et al. (1977) 

Dairy 1.0 7 2.3 35 0.96 Backman et al. Dairy 
1.0 12 1.5 35 0.96 (1986) 
1.0 22 0.9 35 0.96 
2.7 22 2.1 35 0.96 
2.7 34 1.5 35 0.96 
3.2 44 1.4 35 0.96 
3.2 87 0.8 35 0.96 

Dairy 3.8 24 l.ic 23 0.91 Rittmann Dairy 
3.8 72 1.2 23 0.91 et al. (1982) 

Landfill 27.0 8 3.3 25 0.94 DeWalle S. 

Ot 
o 

leachate Oiian (1976) 
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Although sulfate reduction with H2 Is thermodynamlcally more favorable 

than H2 methanogeneslsf a sulfur balance Indicates that most of sulfate 

was reduced to sulfide and precipitated with metals originally existed in 

the waste. The sulfide precipitates in the blomass, which can greatly 

reduce biomass activity, may account for the lower treatment performance 

of the sulfate-rlch waste. It is suggested that, with the type of waste, 

sulflde-metal precipitates be removed first before the SMAR treatment. 

Also, effluent recycling Is used to neutralize the influent pH and dilute 

any potential toxicants such as sulfate. 

In the SMAR treatment of thermal sludge conditioning wastes, three 

pilot studies are listed in Table 3. The type of waste was characterized 

as having a high temperature, high COD (6-20 g/L), and low non-volatile 

solids, an ideal waste for SMAR treatment. TCOD removal rates in these 

studies vary with the strength of the wastes. It appears that the waste 

treated by Crawford et al, (1980) Is more treatable. Oague et al. (1980) 

reported that TCOD removal efficiency increases only 13% by doubling the 

SMAR volume in series. All the data listed in this category show a TCOD 

removal of less than 80%, indicating the refractory and complex nature of 

the wastes. 

Dairy wastes are also good candidates for SMAR treatment. This type 

of waste Is rich in lactose and protein and has a well-balanced nutrition 

for anaerobic treatment. Unlike thermal sludge conditioning wastes, 

which are highly dissolved, dairy wastes contain colloidal particles. As 

shown in Table 3, the TCOD removal rate is in the range of about 1.0-2.0 
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g/L/d, which is similar to the synthetic protein-carbohydrate waste 

treated by Young and HcCarty (1969). It is noted that TCOD removal rate 

for the dairy wastes is the lowest among the five groups of wastes 

listed. Operation at low temperatures does not lower the removal rate, 

suggesting it is probably diffusion-limited. It is interesting to note 

that Kelly and Switzenbaum (1984) also reported a weak temperature 

dependence of their fluidized-bed SMAR treating synthetic whey wastes, 

even with higher mixing intensity than the static-bed SMAR. 

DeWalle and Chian (1976) also reported successful treatment of a 

landfill leachate rich in fatty acids and heavy metals. The SMAR was 

operated in a completely mixed mode with an effluent recycle ratio of 

25:1. The TCOD removal rate was about 3.3 g/L/d at 25° C. In another 

report, Fe (430 mg/L) and Zn (16 mg/L) in the leachate were removed to 

above 94% (Chian and Dewalle, 1977). It is estimated that if all the 

sulfate in the influent were reduced to sulfide, only 30% of the metals 

in the influent would be removed as sulfides. Precipitation of the 

metals as carbonates was the major removal mechanism. 

In addition to organics and heavy metals, the SMAR process has been 

studied for the destruction of coliforms and bacteriophages in raw sewage 

(Polprasert and Hoang, 1983). It was found that the coliform MPN could 

be reduced by about 75% at a hydraulic retention time of 2 days. 

Recently, applications of the SMAR process have been extended to the 

treatment of coal gasification wastes (Blum et ai., 1986). This waste 

contains a large amount of hydroxyl and methoxyl benzenes which, in 
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general, are toxic to anaerobic bacteria. Comparison studies between 

SMARs and serum bottle cultures reveal that SMARs are superior in their 

ability to rapidly acclimate to high concentrations of benzenes. Phenol 

concentrations as high as 1885 mg/L could also be reduced to less than 1 

mg/L with a hydraulic retention time of 18 hours. 

Johnson and Young (1983) studied inhibition of anaerobic digestion 

with some organic priority pollutants. Their data suggested that 

adsorption plays an Important role in removing soluble organics. For 

instance, up to 99% of the hexachloroethane can be adsorbed after 48-hour 

contact with sterilized cultures. The importance of adsorption in 

regulating substrate utilization behavior under the SMAR environment is 

not well understood. 

Parkin et al. (1983) studied the toxicity of cyanide, chloroform, 

formaldehyde, ammonium, nickel, and sulfide to anaerobic growth, using 

serum bottles and SMARs. It was shown that methanogens are capable of 

acclimating to relatively high concentrations of these toxicants. They 

explained that the provision of a long SRT is the key to preventing the 

process from deteriorating due to toxicant exposure and to allowing 

acclimation to occur. 

Packing media 

The importance of the packing media in the SMAR process can be 

understood by comparing the SMAR with the upflow anaerobic sludge blanket 

(UASB) reactor. In UASB, no packing media are used. Therefore, 
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successful operation has to rely entirely on the development of highly 

settleable granules (Lettinga et al., 1980). Frostell (1981) has 

demonstrated that the SMAR is more capable of handling hydraulic shock 

loadings and has lower effluent solids than the UASB. However, the use 

of packing media in SMAR may increase initial costs and create plugging 

problems, if not properly designed and operated. 

In any event, optimum media design attempts to maximize active 

biomass in the system and avoid plugging problems during operation. Both 

attached and suspended biomass can be present in a SMAR. Van Den Berg 

and Lentz (1979) have shown that the relative importance of attached and 

suspended biomass by comparing upflow to downflow reactors with different 

area/volume ratios. Their experimental data show that there is a 

fundamental difference in operation between downflow and upflow reactors. 

Downflow reactors operate exclusively as fixed film reactors, while 

upflow reactors depend on the surface area/volume ratio. Activity of the 

fixed film (in L CH4 STP/cm^/d) decreases from 62% of the total activity 

(including suspended growth activity) for the downflow reactor with the 

area/volume ratio of 105 m^/m^ to 25% with the ratio of 53 m2/m2. 

If this is the case for the static-bed SMAR, one can speculate that 

the relative Importance of attached and suspended growth might actually 

vary with the type of media being used. Oague et ai. (1980) used 16 mm 

Raschig rings to treat a thermal sludge conditioning waste. The Raschig 

rings had a porosity of 0.9 and a specific surface of area of 344 m^/m^, 

resulting an area/liquid volume ratio of about 380 (344/0.9) mVm^. The 
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ratio is about three times the ratio for the cross-flow media used by 

Young and Dahab (1982), which had a porosity of 0.95 and specific surface 

area of 98 m^/m^. It is not well understood if such a large difference 

in the area/liquid volume ratio can actually affect SMAR treatment 

performance. 

Song and Young (1986) studied the effects of specific surface area 

using 60-degree cross-flow media. Three media were compared. The media 

each had a porosity of 0.93 and specific surface areas of 98, 138, and 

223 m^/m^. Their results showed that the differences in SCOD removal 

between media with specific surface areas of 138 and 223 mVm^ were very 

small, compared to the differences in specific surface area. An increase 

of over 60% in specific surface area produced less than a 2% increase in 

SCOD removal for all the loadings tested. It was explained that most of 

the COD removal was associated with the blomass held loosely in the 

interstitial void spaces in the media. However, the difference in SCOD 

removal between media with specific surface areas of 98 and 138 m^/m^ was 

greater. A 40% increase in specific surface area produced approximately 

a 7% increase in SCOD removal. If the major SCOD removal was attributed 

to suspended growth, this difference in SCOD removal cannot be explained, 

unless some other factors were involved. 

Song and Young further explained that one factor that needs to be 

considered is the media opening size. Media with small openings may 

hinder solids transport and eventually cause plugging. Also, very small 

openings may lead to severe short-circuiting through the small void 
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spaces, thus lowering treatment efficiency. The media with the smallest 

specific surface area had the largest media pore size (79 mm by 54 mm 

compared with 48 mm by 38 mm and 28 mm by 23 mm for the other two). It 

was explained that the larger media pore size was beneficial and 

compensated for the smaller surface area In SCOD removal. 

The Importance of media pore size was also demonstrated In an 

earlier study by Young and Dahab (1982). Two of 60-degree cross-flow 

media (with equivalent pore sizes of 46 mm and 32 mm, respectively), and 

one of 90-mm Pall rings (20 mm), and the other of 90-mm perforated 

spheres (15 mm) were compared. It was found that the SCOD removal 

efficiencies were strongly correlated with the media type, size, and 

shape. Media which had the largest pore size performed best in SCOD 

removal for all the loadings tested. Media with the greater pore sizes 

were less likely to have channeling at lower pore velocities of liquids 

and blogas. Also, lower pore velocities allowed solids to settle and not 

to be lifted easily by the upflowing gas stream. It was also found that 

channeling was more likely to occur in randomly packed media such as the 

Pall rings and the perforated spheres, since the openings in these media 

have more chance to be vertically oriented. 

The effects of orientation of media were also studied by Song and 

Young (1986) using cross-flow (22.5°, 45°, 67.5°) and tubular media 

(90°). It is concluded that better SCOD removal is associated with the 

flatter orientation for all the loadings tested. The differences in COD 

removal between media with 22.5° and 45° were small while differences 
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between these two media amd the media with 67.5° orientation were 

relatively significant. The tubular media performed significantly worse 

than did the cross-flow media with the same specific surface area. It 

was explained that media with the flatter slopes have a greater ability 

to redistribute the flow within the media matrix, therefore increasing 

the intermixing and contact efficiency between substrates and organisms. 

Also, the media with flatter slopes were more effective in holding the 

solids in the reactors. In any event, an increase in mixing and solids 

in the system can result in better treatment performance. However, the 

media with the 60° orientation was suggested for practical use to avoid 

clogging problems. 

For all the reasons discussed above, when conducting pilot studies, 

media with the exact type, size, and shape as for the full-scale reactors 

to be designed should be used. It is also suggested that, in full-scale 

design, the bottom portion of SMARs should not be packed to avoid 

clogging problems (Young, 1985; Roe and Love, 1984). 

SMAR Mathematical Simulation 

Simulation of the SMAR system requires knowledge of at least two 

aspects: (1) substrate transfer and utilization, and (2) solids 

(biomass) transport. 

Substrate Transfer And Utilization The SMAR process has been 

described as a complex phase-heterogeneous (liquid, biomass, and biogas) 

system with a highly concentrated growth and limited mixing intensity 
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(Chiang, 1983). Consequently, the concept of biofilm and biofloc is used 

to describe the substrate transfer and utilization in the SMAR system. 

The concept of biofilm arose in the early i960s and was based on the 

classical mass transfer theory (Gulevich et al., 1968). The biofilm 

concept states that (Figure 10): 

(1) The substrate has to diffuse through a liquid film adhered to the 

biofilm surface before it can be utilized. This step is often 

termed "external diffusion." 

(2) The diffusion of substrate into the cell matrix needs to be 

considered and occurs simultaneously with the utilization by the 

biofilm. The second step of diffusion is termed "internal 

diffusion." 

Williamson and McCarty (1976a) have used the concept to develop a 

now widely accepted biofilm model, using Monod kinetics and Pick's 1st 

Law under steady-state conditions: 

Using the same approach, the above relationship can also be developed for 

biofloc model (Figure 11): 

dz Df (Ks+Sf) 
(35) 

£S£ + 2 dSf , kgSgXg 
dr* r dr Df(Ks+S Df(Ks+Sf) 

(36) 
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In Equations 35 and 36, "Sf" is the limiting substrate concentration in 

the bio£ilm/biofloc in g/cm^; "Xf" is the biofiIm/biofloc density in 

g/cm^; "km" is the maximum substrate specific utilization rate in g/d/g 

biomass; "Kg" is the half-saturation constant of Monod kinetics in g/cm^; 

"Df" is the substrate diffusion coefficient within the biofilm/biofloc in 

cmVd; and "z" and "r" are the biofilm and biofloc depth, in cm, 

perpendicular to the direction of the substrate flux. The Df is often 

determined as a fractional portion of the substrate diffusion coefficient 

in water (Dy). Williamson and McCarty (1976b) have reported a value of 

Df as 0.8 of Dw for nitrifier biofilm. 

Equations (35) and (36) describe substrate utilization within the 

biofilm and biofloc under steady-state conditions. The biofloc equation 

has also been used to describe oxygen utilization kinetics for aerated 

packed-bed reactors (Lee and Stensel, 1986) and filamentous bacterial 

growth kinetics for activated sludge bulking (Lau et al., 1984). 

As to internal and external substrate diffusion. Pick's first Law 

may be used as follows (Figures 10 and 11): 

Jt - Df gt (37) 

Jw = Bw (38) 
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where, "Jf and "Jw' are the Internal and external diffusion fluxes of 

the limiting substrate, respectively, in g/s/cm^; "Df" and "Dw" are the 

diffusion coefficients of the limiting substrate in the biofilm and 

liquid film, respectively, in cm^/s; "Sb" and "Sg" are the substrate 

concentrations in the bulk solution, and on the Interface, respectively, 

in g/cm^; "Lw" is the liquid film thickness in cm; and "dz" is the 

differential biofilm thickness in cm. Pick's law simply states that the 

diffusion flux is directly proportional to the substrate gradient across 

the diffusion depth of concern. 

From the viewpoint of boundary layer theory, Lw is considered the 

distance from the biofilm surface out to where the fluid velocity is 99% 

of the superficial velocity (Shames, 1982). In their model verification 

study using rotating cylinders, Williamson and McCarty <1976b) further 

found that the liquid film consisted of two layers. The outer layer, Li, 

may be reduced to zero by mixing. The layer next to Li, which is La, 

cannot be removed by mixing and is believed to result from the uneven 

nature of the llquld-biofilm Interface. The thickness of 12 was 

determined as 56 wm for the nitrifier biofilm in their study. It was 

stated that whether such a layer exists in the biofilm is currently 

unknown. Interestingly, in studying fluidlzed-bed acetoclastlc 

methanogenesls, Wang eû al. (1986) have determined as 22 wm which is 

smaller that the L2 of 56 m determined by Williamson and McCarty (1976b) 

for nitrifier blofllm. 
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The two second-order differential equations, which describe the 

substrate profile within blofllm and biofloc, do not have am analytical 

solution. A numerical method, such as a Runge-Kutta finite difference 

method, must be used. The calculation normally starts from the blofllm 

depth where the slope of the substrate profile is zero and the substrate 

concentration is very small. This is normally referred to as the 

effective depth (Lg). For deep film growth, the effective depth is 

located at the interface between the blofllm and supporting media. 

The calculation proceeds with an incremental blofllm depth. By 

incrementally increasing the blofllm depth, a tentative surface substrate 

concentration (Sg) is determined with each Iteration. The Sg is then 

used to calculate the Internal flux <Jf) at the blofllm depth currently 

simulated and the external flux at (J*) at the llquid-biofilm Interface, 

using Equations 37 amd 38. The calculation continues until Jf equals J*. 

This determines the surface flux (Jo), surface substrate concentration 

(Sg), and the effective blofllm thickness (L@). 

Despite the sound theoretical basis, there are several difficulties 

in applying the biofllm/biofloc model to the SMAR system. First, the 

model requires an assumption that the blofllm is a relatively thin plate 

and the biofloc is relatively small so that the substrate is only 

diffusing into the cell in a direction perpendicular to the cell surface. 

This is unlikely to be true for the SMAR system treating high strength 

wastes. Also, the model does not consider the effects of bacteria decay 

and shear loss, which may be important to the SMAR system (Rittmann, 

1982). 
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Second, the use of the model requires accurate Inputs of all the 

four system parameters (km, Kg, Df, and D^) and the blofilm density (Xf). 

This often complicates the calibration procedure if experimental 

determination of these parameters are not performed. Wang et al. (1986) 

have developed a calibration procedure by minimizing the sum of the 

squares of the deviations between the experimentally determined amount of 

biomass and the model-predicted blomass. The method has been 

successfully used in their studies of the fluldlzed-bed SMAR. 

Finally, and most importantly, the model requires the use of some 

empirical equations to estimate liquid film thickness (L*), which may not 

be appliceUale to a SMAR system in which biogas mixing predominates. 

Currently, three expressions have been used to estimate for upflow 

packed-bed reactors in waste treatment: 

Snowdon and Turner model (Meunier and Williamson, 1981) 

Lw = 1.23(*/p)l/6(dp/vo)l/2(«)3/2(Dw)l/3 (39) 

Gupta and Thodos (Wang et al., 1986; Suidan, 1986) 

° (JD)(Re)(Sc)i/3 

in which, 

JD- (0.010 • B»-i-2"0 

Re = (pdpVo)/wn 

Sc a tf/(pDw) 
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In Equations 39 and 40, "u" and "p" are the absolute viscosity and 

density of liquid, in g/cm/s (poise) and g/cra^, respectively; "dp" is the 

diameter of the packing media in cm; "c" is the specific porosity of 

packing media under operation in cm^/cm^; and "VQ" is the superficial 

velocity in cm/s. Also "JD" is the Colburn J factor for mass and 

momentum transfer; "Re" is the packing Reynolds number; and "Sc" is the 

Schmidt number. The equation is valid only within a packing Re (not 

reactor Re) of 1 to 2140, which covers laminar and turbulent flow in 

packed-bed reactors. 

The third expression for estimating liquid film thickness is similar 

to Equation 40 and requires the use of a plot (Williamson and McCarty, 

1976a): 

ll > ̂  (41) 

in which, "Y" is a function of Reynolds number and can be obtained from a 

plot with Y vs. Reynolds number (Re), shown in Williamson and McCarty's 

paper (1976a). 

Gulevich et ai, (1968) also developed a direct expression for 

calculating as follows: 

(42) 
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where, "u" is the rotational speed of the cylinders on which biofilm 

grows, in 1/s. The above equation is based on the universal Navier-

Stokes mass transfer equation (Equation 42 shown in the original paper of 

Gulvich et al. (1968) uses an incorrect power of -1/3 on the 0% term and 

-1/2 on the w term). 

All the above expressions of liquid film thickness (L# or Li) show a 

relationship of a power of 1/3 to D*, 1/6 to u, and a stronger power of 

1/2 to dp. Interestingly, the Snowdon and Turner expression shows a 

power of 3/2 to expansion bed porosity (c), suggesting the liquid film 

thickness is a strong function of bed porosity. According to this, media 

with a greater porosity might result in a thicker liquid film, thus a 

poorer contact efficiency and lower treatment performance. 

All of the above expressions for are derived for the expanded-bed 

reactors mixed by flowing liquids and may not be directly applied to 

static-bed SMAR reactors in which mixing results primarily from biogas 

produced in the system. It is this property of the liquid-biogas 

interface encountered in the SMAR system that makes it difficult to apply 

the above expressions for in the SMAR system. 

Young (1968), in developing an anaerobic filter model, also 

considered a substrate gradient associated with the biofilm/biofloc 

concept. Instead of using the complicated biofilm/biofloc approach (as 

described above). Young took a much simpler approach of using a 

"substrate gradient factor" to describe the substrate gradient developed 

in the liquid film and cell matrix. The substrate gradient factor (SF), 

as defined by Young, is: 
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SF = Sb/Se (43) 

where, "Sb" is the substrate concentration in the bulk solution (where no 

substrate gradient occurs) and "Se" is the equivalent substrate 

concentration that will result in the same rate of utilization as if the 

biofilm/biofloc were completely dispersed and mixed with the substrate in 

a controlled finite element (AAh). Although not mentioned by Young 

(1968), the equivalent concentration can be elucidated by using the 

following relationship: 

where, the integration runs across the entire effective cell depth (from 

0 to Le)« Xe is the equivalent biomass concentration as if the biofilm 

were completely dispersed in the control element of AAh. In Young's 

anaerobic filter model, "SF" is taken as an exponential function of bulk 

substrate concentration (Sb) as follows: 

SF = 1 + (SFo-l)e"^9^b (45) 

where, "SFQ" is a maximum value for the substrate gradient factor (Figure 

12) and "kg" is a coefficient that must be obtained experimentally. By 

definition, "SF" approaches 1.0 for a completely mixed system. 
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SF = 1 + (SFg - 1) e-kgSm 

COMPLETELY MIXED SYSTEMS, SF = 1.0 

MEASURED SUBSTRATE CONCENTRATION, S, 
m 

FIGURE 12. Conceptual Illustration of Young's substrate gradient factor 
(Young, 1968) 
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From the viewpoint of the biofllm concept used today, the expression 

lacks the consideration of the biogas mixing effect which tends to reduce 

liquid film resistance. Oague and Chiang (1984), in developing a 

theoretical SMAR model, modified the "SF" expression to include the 

blogas mixing effect as follows: 

SF = 1 + (SPo-l)e"*9G°Gb (46) 

where, "Qo" is the superficial biogas flow rate in L/d/cm^, which changes 

along the height of SMAR. The expression assumes that the mixing effect 

on the substrate gradient is an exponential function of the superficial 

biogas flowrate. This might not be appropriate since, based on the power 

dissipation theory as discussed in the previous chapter, the biogas pore 

velocity and biogas pressure should be considered. 

In many aspects, the use of "SF" greatly simplifies the mathematical 

procedure. The difficulties that occur in using the biofilm/biofloc 

model disappear. The use of equivalent biomass concentration (Xg) in the 

bulk solution is more experimentally measurable than is biofilm/biofloc 

density (Xf), especially for the static-bed SMAR system. However, a big 

drawback is that the validity of the expressions for estimating SF has 

not been proven either theoretically or experimentally. 

Solids Transport and Granulation Solids (biomass) transport in 

the static-bed SMAR system may result from shearing and uplifting of 

biogas produced in the system. The shearing loss of attached growth 
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occurs when It grows sufficiently thick or the biogas mixing is 

sufficiently high. As a result, attached growth is sheared into the bulk 

solution. It is not well understood how much of this can actually occur 

in a normally operating SMAR. However, one would speculate that this 

could be important in the upper portion of SMARs, where biogas produced 

in the lower portions has a greater effect. This may be especially true 

in over-loaded SMARs if the rising biogas is not properly managed. The 

direct effect of biomass shearing in the upper portion of SMARs is to 

deteriorate the effluent quality due to suspended solids loss. 

Van Der Meer and De Vletter (1982) have shown that the use of an 

internal gas-liquid separator in the top of a UASB can greatly enhance 

solids settling efficiency. Roe auid Love (1984), however, have proposed 

a method of recycling liquids from the bottom active zone through a 

vacuum gas separator to reduce the uplifting effects of the biogas stream 

in the upper zones of SMARs. 

Rittmann (1982) has shown how the shear loss can be incorporated 

into his steady-state biofilm model by relating the loss to shear stress 

(dyne/cm2). His equation shows that the loss rate (mg/cm^/d) is 

proportional to shear stress by a fractional order of 0.58, using data 

from Trulear and Characklis (1982). It should be noted that their data 

were derived under aerobic conditions using rotating cylinders. 

Therefore, the shear-loss relationship, derived by Rittmann, would only 

account for the liquid mixing and not for the biogas mixing effect. 
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Young (1968) stated that scouring and mixing of biogas flowing 

through the porous bed of a SMAR was the most important factor in solids 

transport. He assumed that the fraction of biomass transported upwards 

is directly proportional to the superficial biogas flowrate. 

As biogas moves upwards, a rolling action occurs and causes the 

biomass particles to take on a granular shape. It is believed that this 

granulation plays an important role in the successful operation of the 

SMAR process in producing highly settleable granules (Lettinga et al., 

1980). 

In a anaerobic bioflocculation study, Oague et al, (1970) also 

observed a low value of sludge volume index (SVI) of 13.6, giving a 

sludge concentration of 7.3 g/L. The anaerobic sludge was described as 

flocculating in a manner similar to activated sludge. 

Mahoney et al, (1984) studied chemical aggregation of granules 

obtained from a UASB reactor, and found that the existence of negatively 

charged extracellular polymeric substance (EPS) is important for divalent 

bridging. 

The mechanism of granulation may also affect biomass activity in a 

SMAR. Previous studies (Young, 1968; Hydroscience, Inc., 1981) indicated 

that a higher activity, in terms of g COD removed/g VSS/day, for the 

suspended biomass in the lower parts of a SMAR than in the upper parts. 

For example. Young (1968) reported an activity of 1.75 vs. 0.1 for growth 

treating volatile acids and 0.65 vs. 0.15 for growth treating 

protein/carbohydrates. They explained that the variation in the biomass 
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activity was due to "granulation decay" as a result of a decrease in the 

substrate level surrounding the biomass when the biomass transports 

upwards. Without the decay, a plugging problem might occur at a faster 

rate in the lower parts of a SMAR in which highly concentrated biomass 

accumulates. 

Static-Bed SMAR Models Young (1968) developed the first SMAR 

model using the concept of substrate gradient factor (SF), as described 

previously. The model also considers biomass transport resulting from 

biogas lifting effects. The model assumes an ideal plug-flow which may 

not be applicable to the SMAR system, especially under heavy loading 

conditions. 

Young's model corrects for short-circuiting due to biogas lifting 

and biomass accumulation by reducing the effective reactor volume (Vg) as 

follows: 

Ve = 6 V (l-kvX)(l-rsQo) (47) 

where, "e" is the porosity of packing media and "kv" and "rg" are the 

first-order correction coefficients for biomass accumulation (X, in g 

VSS/L) and biogas flow rate (Qo in L/d/ft^), respectively. Ky and rg 

were estimated to be about 0.01-0.02 L/g VSS/L liquid volume and 0.0025 

(L biogas/d/ft2)~l. The model over-predicted effluent substrate and 

biomass concentrations for treating complex protein-carbohydrate wastes. 

As was pointed out, this might be due to inadequate descriptions of the 

substrate utilization and biomass transport in the system. 
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Mueller and Mancinl (1976) modeled the SMAR as a series of 

completely mixed reactors for both the liquid and blogas phases. No 

blofllm growth and substrate gradient were assumed. The major advantage 

of the model was to Indicate the chemical equilibria among nitrogen, 

volatile acids, alkalinity, carbon dioxide, and pH. in addition, the 

non-ideal plug flow, resulting from the longitudinal dispersion, could be 

simulated with mathematical techniques. They suggested that the non-

ideality of their SMAR was on the order of three to four reactors in 

series. Unfortunately, the model neither extends an explicit perception 

of the SMAR process nor provides an approach to practical design. 

Meunier and Williamson (1981) proposed a "simplified model" for 

packed-bed biofilm reactors. The model is based on Williamson and 

Mccarty's blofllm model (1976a) as previously described. The "simplified 

model" first set a criterion to determine if the electron donor or 

electron acceptor is the limiting species. Instead of calculating the 

substrate profile within the blofllm, an Iterative equation was developed 

to directly calculate the surface substrate concentration (Sg). The 

Iteration is computed by a method of subsequent substitution until a 

desired accuracy between two consecutive computations in Sf is met, for 

example within 0.01 mg/L. The substrate flux (Jo) Is then calculated 

using Pick's 1st Law and substrate is again checked for limiting species 

using the same criterion. If there is no change in the limiting species, 

the required incremental volume (Vi) for the 1th segment is then 

calculated as: 
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(48) 

where, "ASi" is the incremental decrease of the limiting substrate 

concentration (g/cm^) in segment i, which can be calculated as (Sin-

Seff)/N; "N" is the number of segments chosen for use; "Q" is the 

substrate flow rate in cm^/d; "a" is the biofilm surface area per unit 

reactor volume (or the specific surface area of packing media) in 

cm^/cm^; and "Jo,i" is the surface flux in segment "i" in g/d/cm^. 

When applied to the SMAR system, the model inherits the same 

difficulties as for the biofiIm/biofloc model described previously. More 

importantly, the model provides no insight into the solids transport 

actually occurring in the SMAR system. It is noted that the "simplified 

model" is more suitable for fluidized-bed systems. 

Dague and Chiang (1984) also proposed a theoretical mathematical 

model for static-bed SMARs. The model is termed a "two-culture" model to 

differentiate the attached growth (biofilm) and the suspended growth 

(biofloc). As stated, such a differentiation is necessary to-account for 

differences in substrate utilization and biomass transport. The model 

uses a "contact efficiency factor" (%), which is defined as the inverse 

of the "substrate gradient factor" of Young (1968), to elucidate the 

effects of biogas mixing on reducing liquid film resistance and therefore 

increasing contact efficiency between growth and substrates. In addition 

to the uplift solids transport, as considered in Young's model, the model 

also considers shear loss of attached growth. The model assumes an ideal 

plug-flow, which may not be appropriate. 
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The advantage of the two-culture model Is that Important design 

parameters, such as the surface area and porosity of packing can be 

directly related. The relative importance of porosity and surface area 

can be evaluated, if the model parameters are properly determined. 

However, as with Young's model, the "two-culture" model requires the 

determination of "contact efficiency factors", which are difficult to 

determine. It is the writer's opinion that none of the models discussed 

above are applicable because of the complex nature of the SMAR system. 

As indicated in many pilot-scale studies (Young, 1965), it becomes 

clear that, in the SMAR system, the major growth responsible for 

utilization is biofloc rather than biofilm. In other words, the porosity 

is a more important factor than the surface area of packing for the 

upflow static-bed system. Therefore if the "two-culture" model can be 

simplified into a "one-culture" model for biofloc alone, it might become 

more feasible to determine the "contact efficiency factor" for biofloc. 

Evaluation of Full-Scale SMARs 

Two full-scale static-bed SMARs are evaluated and compared below 

(Table 4). The Centennial Mills plant (Taylor, 1972) is located in 

Spokane, Washington, and the Celanese plant in Vernon, Taxas (Witt et al. 

1979). Both plants treat carbohydrate wastes. However, the sugar-

refining wastes treated by the Vernon plant contains some polymers of 

guar gum which are considered less susceptible to hydrolysis. The Vernon 

plant received a flowrate of 0.22 mgd (832.7 m^/d), which is about twice 
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that of the Spokane plant. The Vernon plant has one SMAR unit, 40 ft in 

diameter and 30 ft high (12.2 m by 9.1 m) and is packed with plastic 

packing with a porosity of about 0.95. The Spokane plant has three SMAR 

units, each is 30 ft in diameter and 20 ft high <9.1 m by 6.1 m), 

operating in parallel with rock packing and a porosity of about 0.40. 

The Vernon plant was operating at a COD loading rate of 7.9 g/L 

liquid volume/d with a theoretical retention time of 28.6 hrs and a 

temperature of 37° C, while the Spokane plant at 9.5 g/L liquid volume/d, 

22.2 hrs, and 32° C. 

Several conclusions regarding the operation and performance of the 

Vernon and Spokane plants can be made: 

(1) The loading rates used by these two plants are close to the loading 

rates obtained in mzmy pilot studies in treating food-processing 

wastes at a COO loading rate of 8-10 g/L/d and a retention time of 

about 1 day. 

(2) The total COD (TCOD) removal rate is higher for the Spokane plant 

(6.1 g COD/L/d) than for the Vernon plant (4.7 g TCOD/L/d). The 

higher TCOD removal rate for the Spokane plant was likely due to the 

starch waste, which was believed to be easier to treat than the 

sugar gum polymer wastes for the Vernon plant. The higher loading 

rate at the Spokame plant might not be the reason for its higher 

removal rate, since both plants were believed to be operating at 

their saturated loading rates. 
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TABLE 4. Comparisons between two full-scale SMARs 

Centennial Mills Celanese Chemical 
Parameter Unit Spokane plant Vernon plant 

Waste 
m3/d 

Wheat starch Guar gum 
Flowrate m3/d 515 833 
TCOD mg/L 8800 9140 
BOD5 mg/L 6500 
TSS mg/L 2650 

SMAR 
Dimensions m 9.1 dia. 12.2 dia. 

by 6.1 ht. by 9.1 ht. 
Units no. 3 1 
Total volume m3 . 1190 1046 

Packing 
Media Rock Plastic 
Porosity (-) 0.40 0.95 

Operation 

Temp oc 32 37 
TCOD load g/L/d* 9.5 7.7 
Detent, time hour® 22.2 28.6 
Recycling No Yes 

Performance 

TCODr (%) 64 61 
TCODr g/L/d® 6.1 4.7 
TCODeff mg/L 3170 3590 
TSSeff mg/L 1460 210 
Methame (%) — 73 

Reference Taylor (1972) Witt et al 
(1979) 

^Based on the clean-bed liquid volume. 
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(3) The Spokane plant effluent solids was as high as 1460 mg TSS/L, 

which accounts for 53% of the effluent TCOD of 3170 mg/L. The 

Vernon plant discharged only 210 mg TSS/L. This gives a daily 

solids discharge of 752 and 175 kg TSS for the Spokane and Vernon 

plants, respectively. Further analysis indicates that the effluent 

suspended solids at the Spokane plant can be reduced to 370 mg TSS/L 

within a 30-minute lab-sedimentation period. It is clear that the 

Spokane SMAR system was poorer in retaining solids in spite of the 

fact that the Spokane SMAR had a much lower liquid superficial 

velocity (2.5 m/d) than does the Vernon SMAR (7.1 m/d). This 

suggests that the packing used at the Vernon plant (with a porosity 

of 0.95) was superior to the rock packing used at the Spokane plant 

(with a porosity of 0.40) in retaining biomass in the system. This 

comparison confirms Young and Dahab's finding in their pilot-scale 

studies (1982) that higher pore velocities resulting from the 

packing media with random-packed smaller openings is more likely to 

hinder settling of well-flocculated solids and discharge more solids 

In the effluent. 

(4) The Vernon plant reported that effluent recycling resulted in 

extremely smooth operation, excellent COD removal and operation with 

un-neutrallzed or partially neutralized feed. However, the Spokane 

plant did not recycle effluent during normal operations but recycled 

100% when the plant received no feed. It is not clear if the 

recycling practice used in the Vernon plant can be used in the 
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Spokane plant to give any benefit, such as a better mixing 

intensity, as suggested by OeWalle and Chian (1976). 

(5) It was reported that the Spokane plant could fully recover within 3 

hours at the full loading rate after one month recession. This 

confirms many previous pilot-scale studies. This also suggests that 

the slow decaying anaerobic system is highly suited to industries 

that have seasonally varying waste streams. 
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EXPERIMENTAL STUDY 

The experimental study was conducted in the Environmental 

Engineering Laboratory located in the Town Engineering Building, Iowa 

State University, Ames, Iowa. The study included the operation of three 

85-L, static-bed, submerged-media, anaerobic reactors (SMARs) with 

continuous feeding of a synthetic waste of animal-grade low-heat non-fat 

dry milk (NFDM) solution. The entire setup was operated in a 35° C 

constant temperature room. 

Equipment and Substrate 

Pilot-Scale SMARs 

As shown in Figure 13, three cylindrical columns^ were used as the 

pilot-scale SMARs with approximately the same operating volume of 85 

liters but different heights and diameters. The shortest column (SMAR A) 

was constructed of 0.48-cm PVC, with dimensions of 44.8 cm l.D. by 59.7 

cm height. The other two columns (SMARs B and C) were constructed of 

0.32-cm Plexiglas, with dimensions of 29.8 cm l.D. by 128.3 cm height and 

19.7 cm l.D. by 288.1 cm height, respectively. A photograph of the SMAR 

set-up is shown in Figure 14. 

Each column was equipped with a bottom inlet distribution panel to 

provide a uniform influent feed (Figures 15 through 17). The 

height/diameter ratios, which characterize the slenderness of the SMARs, 

^Manufactured by the ERI Machine Shop, Iowa State University, Ames, 
Iowa 50010. 
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FIGURE 14. Photograph of the SMAR setup used in this study 
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FIGURE 17. Schematics of bottom distribution plate for SMAR C 
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are 1.2, 4.1, and 14.3 for SMARs A, B, and C, respectively. 

Each SMAR was packed with 16-inm (nominal size) plastic Flexiring* up 

to the height of the highest sampling ports, i.e., 53.3 cm, 121.9 cm, and 

281.8 cm for SMARs A, B, and C, respectively. The bed porosity was 

determined to be 0.9. A media-specific surface area of 344 m^/m^ is 

reported by the manufactures. Table 5 shows the dimensions of the three 

SMAR units. 

TABLE 5. Dimensions of SMAR units used in this study 

Reactor Packing 

SMAR I.D. 
(cm) 

Reactor 
height 
(cm) 

Packing 
height 
(cm) 

Reactor 
volume 
(L) 

Packing 
volume 
(L) 

liquid 
volume 
(L) 

liquid 
volume 
(L) 

A 44.8 59.7 53.3 94.1 84.0 84.7 75.6 

B 29.8 128.3 121.9 . 89.5 85.1 80.6 76.6 

C 19.7 288.1 281.8 87.8 85.9 79.0 77.3 

Each SMAR was equipped with two types of sampling devices, i.e., 

suspended growth sampling ports and attached growth sampling cages at 

several different heights. There are three sampling heights for SMAR A, 

five for SMAR B, and seven for SMAR C. The sampling ports were 

constructed of 5.6-mm stainless steel tubes and extended to the center of 

the reactor. Four sampling cages, separated by 90 degrees, were 

^Koch Engineering Company Inc., Wichita, Kansas 67208. 
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fabricated at each height of the sampling port. The sampling cages were 

constructed of 1-mm stainless steel wire with dimensions of 3.5 cm 

diameter by 8.0 cm length and can hold 10-12 units of 16-mm plastic 

Flexiring. 

The sampling cage was held in a Plexiglas core which could be slid 

out of the reactor along an outer Plexiglas sleeve to fetch the attached 

growth. The sleeves (Figure 18) were extended out of the reactor wall 

and could also serve as a dispersion ring to reduce wall effects. The 

sampling cage holder was fabricated with 3 o-rings at both ends and 

center. The outside and central o-rings seal the reactor when the holder 

is in the reactor under normal operating conditions. However, when the 

sampling holder is slid out for sampling, the inside and the central o-

rings are used to seal the reactor. Unfortunately, because of the long-

term exposure of these inside o-rings to the digestion environments, they 

became worn out and failed to function properly. 

The feed stock solution was stored in a refrigerator (IQO C) and 

pumped by a #14 Masterflex pump into a small agitated Plexiglas tank 

where the stock solution was diluted with warm tap water to produce the 

desired concentration of feed. The dilution tank has inside dimensions 

of 30.5 cm by 25.4 cm by 10 cm water depth (7.7 liters). In order to 

obtain a stable tap water flowrate, the dilution tsmk was equipped with a 

tap water pressure reducer (reduced to about 5 psig) and a float control 

valve. The reduced pressure was necessary to increase the sensitivity of 

the float control valve. The diluted feed was then pumped by a #15, 
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3-headed Masterflex pump into the bottom inlet distribution plate of each 

SMAR. By adjusting the speed of the stock and feeding pumps, any 

combination of organic and hydraulic loading rates could be obtained. 

The liquid effluent and produced biogas passes through a #18 Tygon 

tubing (8.0 mm I.D.) and discharges into a 250-mL respiratory bottle 

where the biogas is separated from the effluent. The effluent line is 

adapted to the bottom side arm of the separation bottle and bent into the 

shape of an inverted siphon with a siphon break on the downstream side. 

By controlling the level of the siphon break, the liquid level in the 

separation bottle can be adjusted. A liquid level in the separation 

bottles of approximately 8 cm was maintained to ensure a proper seal on 

the SMAR system. The effluent then passed into a common reservoir for 

wasting. 

The biogas, after separation, passes into a 1000-mL glass bottle to 

remove some carry-over water vapor before running into am H2S scrubber. 

This is important to prevent the scrubber from flooding. The H2S 

scrubber was made by filling Fe203-coated wooden chips into a 1000-mL 

wide-mouth glass bottle. After H2S is removed, the biogas volume is then 

measured with a Wet Test gas meter.5 A glass gas sampler, equipped with 

a septum,6 was installed in the line between the scrubber amd the gas 

meter to allow for gas saunpling by using a syringe. Figure 13 shows the 

sampling heights and the entire lineup of the SMAR system. 

^Precision Scientific Co., Cat. no. 63110, Chicago, Illinois. 

^Thermogreen™ LB-1 cylindrical, 6.0 mm diameter, cat. no. 20668, 
Supelco Inc., Beliefonte, PA 16823-0048. 
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Substrate 

The substrate used In this study was a synthetic waste of animal-

grade, low-heat, non-fat, dry milk? (NFDM) solution supplemented with 

minerals important to anaerobic microorganisms. The NFDM was relatively 

cheap and had a well balanced nutrition and could be stored for a long 

period through the entire study. The low-heat milk was chosen because it 

contains a higher nitrogen content than the high-heat milk. The NFDM has 

a COD equivalent of 1.13 g/g NFDM. Table 6 shows the ingredients of the 

NFDM. 

For SMAR feeding, the NFDM stock solution was made up each time in 

30-L volume with a concentration varying from 50 to 300 g COD/L, 

depending upon loading requirement. In order to obtain suitable 

buffering, bicarbonate (NaHCOs) alkalinity (as CaCOa) was added at a 

alkalinity/CCD ratio of 1/40 to 1/4. During the acclimation period, a 

higher alkalinity/COO ratio was used. Once the system was acclimated, a 

ratio of 1/10 to 1/40 was used during normal operating periods. 

Five trace metals (Fe, Zn, Ni, Co, and Mn) were added in the stock 

solution at a concentration of 200 ppm (of the NFDM) for Fe and 20 ppm 

for the other four metals. Table 7 gives the recipe for preparing 30-L 

of 150 g COD/L NFDM stock solution. 

To obtain a well dissolved homogenous stock solution, a milk paste 

was first prepared by hamd euid then churned by a homogenizer^ at a low 

^Swiss Valley Farms Co., Davenport, lA 52808. 

^TR-5 Homogenizer, Tekmar Company, Cincinnati, Ohio 45222. 
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TABLE 6. Ingredients of NFDM substrate 

Parameter Values Units Reference 

COD 
TOC 

TKN 
T-PO4 

Fat 
Lactose 

Particle size 

Ash 
Solub. index 

Standard Plate 
Bacterial count 

1.13 
0.21 

5.4 
2 . 2  

31.0 
51.0 

98% thru 
#40 sieve 
8.2 

31.25 

50,000 

g/g NFDM 
g/g NFDM 

g/100 g NFDM 
g/100 g NFDM 

g/100 g NFDM 
g/100 g NFDM 

% 
% 

count s/g NFDM 

This study 
This study 

This study 
This study 

Swiss Valley 
Swiss Valley 

Swiss Valley 

Swiss Valley 
Swiss Valley 

Swiss valley 

Trace metals 

Fe 
Ni 
Co 
Mo 
Zn 

4.6 
1.0 
0.8 
3.0 
15.0 

ppm of NFDM 
ppm of NFDM 
ppm of NFDM 
ppm of NFDM 
ppm of NFDM 

This study 
This study 
This study 
This study 
This study 
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TABLE 7. Recipe Of NFDM Stock solution (30 L-150 g COD/L) 

Ingredients Quantity Criteria 

NFOM 3982 g COD/NFDM = 1.13 

NaHCOa 756 g Alk/COD = 1/10 

Mineral stock 80 mL 

FeCl2.4H20 (10 g/L) 35.60 g/L Fe/NFDM = 200 ppm 
ZnCl2 (1 g/L) 2.08 g/L Zn/MFDM = 20 ppm 
NiCl2.6H20 (1 g/L) 4.05 g/L Ni/NFDM = 20 ppm 
C0CI2.6H2O (1 g/L) 4.04 g/L Co/NFDM = 20 ppm 
MnCl2.4H20 (1 g/L) 3.61 g/L Mn/NFDM = 20 ppm 

speed for about 5 minutes. This is important to avoid any floating 

chunks, which are difficult to dissolve when more water is added later to 

get the total volume. After a homogenous milk paste was prepared, 

bicarbonate and mineral solution and tap water were added to bring the 

total volume to 30 L amd then rapidly mixed by the homogenizer at a 

higher speed for about 30 minutes. To ensure a well dissolved solution, 

the homogenized stock was then screened through a #100 sieve before use. 

When well homogenized, the stock solution could easily pass the sieve. 

SMAR Operating Procedures 

Tracer Study 

The purpose of the tracer study was to investigate the hydraulic 

characteristics of the three SMARs both before seeding with and without 
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external air gassing (clean bed) and after seeding at some selected 

loading rates (dirty bed). The tracer study was done by injecting a slug 

of 50 mL of 2000 mg Li+/L into the influent line of each SMAR. Lithium 

nitrate was used before seeding. However, lithium chloride was used 

after seeding as nitrate could inhibit methanogenic bacteria. Four runs 

were done during different phases of the study, as shown in Table 8. 

TABLE 8. Operating conditions for SMAR tracer studies 

Run Bed 
Conditions 

Flowrate 
(mL/min) 

CODin 
(g COD/L) Type of gassing 

1. Clean 146 0.0 No gassing 

2. Clean 167 0.0 External air gassing 

3. Dirty 109 2.1 Internal biogassing 

4. Dirty 110 4.0 Internal biogassing 

Air gassing was done by running a #18 Masterflex pump into the 

bottom influent line with a single point application. Although this can 

not exactly simulate SMAR gassing patterns at normal operating 

conditions, it is considered proper since most of biogas occurs in the 

lower parts of the SMAR. Runs 3 and 4 represent a middle and the highest 

organic loading conditions, respectively, with the highest nominal 

hydraulic loading rate (or 0.5 day detention time) used in the study. 

Comparisons between the clean-bed with gassing (Run 2) and dirty-bed 
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studies (Runs 3 and 4) help to understand the effect of biomass 

accumulation on the hydraulics of the SMAR system. 

Upon injection of the lithium tracer, approximately 25 mL of 

effluent samples were collected over a period of about twice the 

detention time (about 24 hours). The sampling frequency was every thirty 

minutes within the period of the theoretical detention time and every one 

hour thereafter. For the dirty-bed studies, samples were filtered with a 

fiber glass filter^ right after collection. The filtration was necessary 

to use atomic emission for Li+ analysis (see the following section on 

Analytical Methods). The SMAR influent flowrate was also measured every 

hour during the study. The average flowrate was used to calculate the 

theoretical detention time. 

Start-up and Acclimation 

Before the three SMARs were seeded, the reactors were emptied from 

the previous tracer studies to determine the porosity of the packing 

media. All the influent, effluent, and gas lines were connected. Gas-

liquid separation bottles, vapor traps, H2S gas scrubbers, and Wet Test 

gas meters were on line and tested for leaks. 

Seed was obtained from the primary anaerobic digester at the City of 

Ames Wastewater Treatment plant on August 4, 1986. The digester was in a 

healthy condition and operating at an SRT of about 15 days and mixed by 

intermittent biogas recycling. The sludge obtained from the digester was 

^Whatman GF/C glass microfiber filter, 4.25 cm. 



www.manaraa.com

105 

Immediately screened with a #10 sieve to remove large chunks and pumped 

into each SMAR with a #18 Masterflex pump right after the screening. 

Routine Maintenance and Daily Monitoring 

Successful operation of the SMARs relied on consistent, careful, and 

thorough routine maintenance. A single outbreak might disturb the entire 

system and require additional time for a steady-state test. In some 

cases, it even caused failures of operating devices. A daily inspection 

checklist was therefore established as shown in Table 9. The checklist 

kept expanding to include the problems not in the current list throughout 

the entire study. 

SMAR dally monitoring included flowrate measurement and gas meter 

readings. Influent flowrate was measured by volume of the combined flow 

of stock solution and dilution tapwater into the dilution tank. Gas 

meter readings, gas temperature, and barometric pressure were recorded 

daily and used to calculate daily average gas production at standard 

conditions (0° C and 1 atm). The Influent was also sampled from the 

dilution tank daily for COD analysis during steady-state operation. 

Loading Schedule 

The loading schedule for the three SMARs was performed on the basis 

of volumetric COD loading rate and theoretical detention time (Table 10). 

The loading rate and detention time were based on clean-bed liquid 

volume. The COD load was gradually increased after each steady-state 

study with a testing range from 1 to 12 g/L/d and three detention times 
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TABLE 9. SMAR daily inspection list 

A. Stock solution 

1. Is the stock solution enough for the next 24 hours? 

2. Is the stock line getting clogged? 

3. Are the connecting joints around the stock pump getting 
loose? 

4. Is the Masterflex pump tubing getting broken? 

B. Influent and effluent 

1. Is the tapwater pressure reducer getting clogged 
(indicated by a low reading in pressure gauge)? 

2. Is the float control valve of the dilution tank too 
insensitive due to high operating pressure in the pressure reducer 
(adjust to about 5 psig)? 

3. Is the dilution tank mixer operating at a suitable speed (too 
high rpm causes unstable regulation in the float control valve; too 
low rpm causes inadequate mixing)? 

4. Is the feeding Masterflex tubing getting broken? 

5. Are the common effluent reservoir and effluent line getting 
clogged? 

C. Liquid-gas s^Muration 

1. Are liquid levels in separation bottles suitable (low level 
causes Inadequate sealing and Indicates a unusual back pressure 
from a flooding or tight-packing scrubber if the siphon break is 
high enough; and higher levels might flood the gas line)? 

2. Are H2S gas scrubbers getting flooded? 

3. Are H2S gas scrubbers getting black as a result of too 
much iron sulfide precipitation? 

4. Are the liquid levels in Wet Test gas meters appropriate? 
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of 0.5, 1.0, and 2.0 days. Exit gas recycle was studied at high loading 

conditions with a COD loading rate of about 10 g/L/d and a retention time 

of about 2 days. A total of sixteen steady-state runs were conducted. 

TABLE 10. SMAR scheduled loading rates 

Run COD load Deten. time CODin 
No (g/L/d) (hour) (g/L) 

la 1.0 48 2.0 

2a 2.0 48 4.0 
2b 2.0 24 2.0 
2c 2.0 12 1.0 

4a 4.0 48 8.0 
4b 4.0 24 4.0 
4c 4.0 12 2.0 

6b 6.0 24 6.0 

8a 8.0 48 16.0 
8b 8.0 24 8.0 
8c 8.0 12 4.0 

10a 10.0 48 20.0 
10b 10.0 24 10.0 
10c 10.0 12 5.0 

Steady-State Sampling 

Steady-state conditions at a specific loading are assumed to exist 

if daily average gas production rate is relatively constant for at least 

three detention times. This is termed "pseudo steady-state" conditions. 

Samples are taken at various depths in each SMAR using the following 

procedures : 
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(1) Gas meters are first read and gas Is sampled for immediate methane 

analysis using a GC. 

(2) Influent flowrate is measured and influent is sampled/ acidified, 

and refrigerated for later COD analysis. 

(3) Gas line is disconnected at location between vapor traps and 

separation bottles. 

(4) With the influent running, liquid samples and/or attached samples 

are taken from various heights of each SMAR from top to bottom. 

In the runs when samples are analyzed for activity, additional care 

is taken to avoid oxygen exposure. This is done by purging sampling 

bottles (1 L, plastic) with Ng gas right before sampling. Also, when 

taking samples from the SMARs, a tube is used to discharge samples below 

the liquid levels in the sampling bottles. 

Analytical Methods 

Operation of the SMAR system involves very intensive analytical work 

on a routine basis. Table 11 summarizes the analyzed items and the 

methods used in this study. These methods were constantly checked for 

reliability and efficiency as the study progressed, using the quality 

control program suggested by USEPA (1979). The TC method of COD analysis 

developed in this study is the outcome of application of the quality 

control program. 
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TABLE 11. Summary of analytical methods used in this study 

parameter Method Samples Frequency 

Biogas 

Gas production Wet Test meter 

Methane content GC 

Biooass 

Solids 

Activity 

Liquids 

PH 

Alkalinity & 
Total V.A. 

SCOD & TCOD 

SCOD 

C2-C5 acids 

Nitrogen 

Phosphate 

Li 

Standard Methods 

AMAb 

pH meter 

Titration 

TC methodc 

GC 

Standard Methods 

Standard Methods 

AE* 

Co,Ni,Ca,Mn,Zn AE 

Biogas 

Biogas 

Effluent 

Ports 

Ports 

Effluent 
and ports 

Effluent 

Inf & Eff 

Ports 

Ports 

Feed 

Feed 

Effluent 

Feed 

Daily 

Weekly and S.S.a 

Weekly and S.S. 

S.S. only 

S.S. only 

Daily and S.S. 

Initially only 

Weekly and S.S. 

S.S. only 

S.S. only 

Initially only 

Initially only 

Tracer study 

Initially only 

^Steady state. 
^Acetoclastic methanogenic activity test (this study). 
^Titrâtion-calibration curve method (this study). 
^Atomic emission. 
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Gas Production and Analysis 

Gas production of each SMAR is measured using a Wet Test gas 

meter.10 These meters are of the liquid-sealed, rotating-drum type and 

have been calibrated in the factory with an accuracy within 0.5% and a 

smallest division of 0.001 ft^. Daily average gas production rate (L at 

STP/day) is calculated as follows: 

SSIP = 28.3 (^iEfr> ['"ff[273,(3I!l2)/2] 

where, subscripts "1" and "2" refer to readings at Day 1 and Day 2 

respectively; "r" is the gas meter reading in ft^; "t" is the time of 

reading in day; "P" is the barometric pressure in mm Hg; and "T" is the 

gas temperature in %. The above equation uses am average measurement of 

Day 1 and Day 2 for temperature and pressure corrections to STP 

conditions, i.e., 0° C and 1 atm. Vapor pressure was not corrected for 

since it is considered to be minor for this study. 

Gas is analyzed for methane content using a gas chromatograph with a 

thermal conductivity detector. Gas samples are taken in r. le line between 

H2S scrubbers and gas meters using a syringe^l and are analyzed 

immediately. Table 12 shows the operating conditions of the gas 

chromatograph for gas analysis. Two standards used for calibration 

Imprecision Scientific Co., Cat. No 63110, Chicago, Illinois. 

llGastight series 1000, Model #1001-TTL, Stock #81320, Hamilton 
Company, Reno, Nevada 89520. 
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contain 10% methane and 10% carbon dioxide,1% respectively, each in a 90% 

nitrogen bottle. The standards are accurate to within 2%. Peak area was 

used for calculating the response factor. Peak identification and 

integration were done with a Sigma Consolers data station. 

TABLE 12. GC operating conditions for biogas analysis 

Gas chromatograph 

Column 

Packing 

Temperature 

Carrier gas 

Flowrate 

Column pressure 

Detector 

Temperature 

Bridge current 

Sensitivity 

Injector block temperature 

Sample size 

Packard Model 7411S 

10 ft by 4 mm glass 

Porapak Q, 80/100 mesh 

60® C 

Helium 

25 mL/min 

60 psig 

Thermal conductivity 

80® C 

225 mA 

10 mA 

80° C 

600 ml 

12C02 standard—Stock # 61224, CH4 standard—Stock #60124, Hamilton 
Company, Reno, Nevada 89520. 

13perkin-Elmer Corporation, Norwalk, Connecticut. 
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Solids and Activity 

Suspended solids concentrations were determined for both total and 

volatile fractions. The Standard Methods (1985) 209D (103-105° C for TS) 

and 209B (550° C for VSS) were followed. A sample size of 10 to 100 mL 

was used, depending on the solids contents. The fiber glass filters used 

were of 4.25 cm Whatman GP/C.l* An aluminum planchet was used to hold 

the filter. The planchet and filter were weighed together because the 

filter often got stuck with the planchet after filtration. Analyses were 

run in duplicate. When an activity test was performed, suspended solids 

were analyzed after the activity test using samples from the incubation 

flasks. 

In order to determine the activity of biomass taken from various 

depths of each SMAR, an activity test was developed as a part of this 

study. Appendix C outlines the experimental procedure. The theory of 

the activity test is only briefly discussed here. A more detailed 

discussion is in the chapter on Results and Discussion. 

The activity test used in this study measures the biomass specific 

methane production rate in terms of L CH4 (STP) produced/gm VSS/day. A 

suitable volume (300-400 mL) of biomass is first obtained from each SMAR 

and directly transferred into a 500-mL incubation flask previously purged 

with N2 gas. The flask is immediately capped and a certain amount of 

NazS is added to reduce oxygen exposure. After stabilization for 1-2 

hours in a 35° C constant temperature room, an excess amount of acetate 

^^Whatman Ltd., England. 
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Is added Into the flask using a syringe. Gas production Is then measured 

with a manometer throughout the entire incubation period. Figure 19 

shows the experimental setup for the activity test. 

After incubation, the manometer is calibrated by withdrawing a 

certain volume (such as 2 mL) of gas from the flask and recording the 

corresponding changes in manometer reading. A calibration curve can then 

be established with several withdrawals. To convert dally gas production 

(vp, 35O C) from operating to STP conditions (vg at 0° C and 1 atm), the 

following equation is used: 

where, the subscript "s" and "p" refer to the standard and operating 

conditions, respectively; "T" is the absolute temperature In Kelvin; "P" 

is the barometric pressure in cm of manometer liquid (Pg = 76.0 cm Hg = 

349.2 cm M.L.); "e" is the water vapor pressure at the incubation 

temperature in cm of M.L. (e = 4.22 In Hg = 19.4 cm M.L., at 35° C); and 

"h" Is the manometer reading in cm of M.L. 

Methane production is taken as 50% of the gas production according 

to the stoichiometric relationship for acetate methanogenesis. Methane 

production is then converted to STP conditions (OP C and 1 atm). 

Finally, total incubation volume is measured and VSS are determined. The 

acetoclastlc methanogenic activity (AMA) can then be calculated as the 

initial linear slope of the methane production curve divided by the total 
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450 mL 
INCUBATION 
VOLUME 
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TETRABROMIDE 
(2.96 s.g.) 

FIGURE 19. Schematic setup for AMA test 
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Incubation blomass (as VSS), and expressed In mL CH4 (STP) produced/d/g 

VSS. 

The test is based on the assumption that the methanogenic biomass 

growth is minimal during the incubation period (usually less than 10 

hours) and that a zero-order substrate utilization rate exits. It is 

felt proper for the test since most of the acetoclastic methanogens found 

so far have regeneration times of over 24 hours. Also, according to 

Michealis-Menten kinetics, the substrate utilization rate approaches zero 

order at high substrate concentrations which can be controlled by an F/M 

(Food/Microorganism) ratio. The minimum growth ensures a fixed amount of 

biomass to be tested, while the zero-order utilization rate ensures the 

independence of the methanogenesis rate on substrate concentration so 

that a constant rate can be established throughout the incubation period. 

Table 13 summarizes the test criteria for the AMA test. 

pH, Alkalinity, and Total Volatile Acids 

pH was measured using a digital pH meter.15 The pH probe used is a 

glass electrode with a separate temperature-compensation probe. The 

accuracy of the meter is 0.01 pH unit. Two standard buffer solutions of 

pH 7.0 cuid 4.0 were used for the calibration. The same pH meter was used 

during alkalinity measurements to determine the titration endpoint. 

l^Hanna Instruments, HI 8417 microprocessor bench pH meter, 
Risorgimento, 3510 LIMENA (Padova), Italy. 
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TABLE 13. Summary of test criteria for AMA test 

Ho. Parameters Test criteria 

1. Incubation flask 500-mL wide mouth Erlenmeyer flask 

2. Incubation volume 300-400 ml 

3. Maximum AMA assumed 1.0 L CH4 (STP)/gro VSS/d 

4. Maximum biomass used 0.5 gm VSS 

5. Substrata added 1.67 gm HAc 

6. Minimum F/M 2.23-3.35 

7. Minimum degree of 
substrate saturation 

94.3-96.1% 

8. Mixing Gentle hand mixing 30 sec every 30 min. 

9. ORP control 1-2 mM sulfide 
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Alkalinity was determined by potentiometric titration with an 

endpoint pH of 4.0. The alkalinity and total volatile acids were 

intensively studied using the direct titration method of DiLallo and 

Albertson (1961) during an upset period for the SMAR process. A sample 

size of 50 mL was used. Both the titrants of H2SO4 and NaOH solutions 

had a normality of 0.05 N. 

Chemical Oxygen Demand 

COD was used as the major index to indicate treatment efficiency for 

the SMARs. Both total COD (TCOD) and soluble COD (SCOD) were run for 

SMAR effluents. SCOD refers to the COD of the sample filtrate with a 

glass fiber filter, which was also used for suspended solids analysis. 

The micro closed-reflux method was used since this allowed many 

samples to be run more efficiently. The closed-reflux method generally 

gives a higher COD recovery ratio than the Standard Methods 50-mL open-

reflux method (about 10% higher). Throughout this study, many versions 

of the micro method were tested. This includes the USEPA method 410.4 of 

2.5 mL sample size (1978), the Zimpro method of 5.0 mL (1980), and the 

Standard Methods 508B of 5.0 mL (1985). Unfortunately, none of the above 

methods were considered suitable for this study. The USEPA method uses a 

sample size that is too small to be adequately reproducible and is only 

good for use with an Auto Analyzer. The Zimpro method is highly subject 

to interference by the silver-mercury precipitates in spectrophotometric 

reading. The Standard Method is not efficient when dealing with a large 
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number of samples as In this study. Consequently, a new method was 

developed for this study (Chiang and Seagren, 1987). Table 14 compares 

all these methods by sample size, dichromate normality, maximum COD 

measuring capacity, and sensitivity. 

TABLE 14. Comparisons of several micro COD methods 

USEPA 
Method 410.4 

Zimpro 
166 

Standard 
508 B 

TC 
Method 

Sample 
size (mL) 

(Auto) 

2.5 

(Others) 

10.0 5.0 5.0 5.0 

Dichromate 
(N) 
(mL) 

0.208 
1.5 

0.208 
6.0 

0.67 
1.5 

0.10 
3.0 

0.25 
3.0 

Acid 
(mL) 3.5 14.0 6.5 7.0 7.0 

Total 
(mL) 7.5 30.0 13.0 15.0 15.0 

Max. COD 
(mg/L) 1000 1000 1608 480 1200 

FAS 
(N) Spec. Spec. Spec. 3.0 5.0 

Sens. 
(mg/L/mL) 160 240 

(mg/L/Abs) 3300 - 2900 

The new method uses a titration procedure in conjunction with a 

calibration curve which is established using standard solutions. The 

method is therefore termed the titration-calibration curve (TC) method. 
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The method is considerably faster than the Standard Method and has an 

equal or better reproducibility. As with the Standard Methods, the TC 

method developed in this study uses a nominal volume of 5 mL for samples, 

3 mL for potassium dichromate solution, and 7 mL for sulfuric acid 

reagent. The mercury and silver requirements are also the same as in the 

Standard Method. However, the dichromate normality is raised to 0.25M to 

give a maximum measuring capacity of 1200 mg/L COD. The normality of the 

ferrous ammonium sulfate (FAS) titrant is raised to 0.15 N. This gives 

the TC method a sensitivity of 240 mg/L COD per mL of FAS added. Five 

potassium hydrogen phthalate (KHP) standard solutions (50, 100, 250, 100 

mg/L COD) were used to establish the calibration curve. An Autopipet^® 

with a maximum volume of 5 mL and reproducibility of 0.5% was used to add 

the samples and all the reagents for the TC method. 

The test tubes used for the TC method were 20 mm by 150 mm Pyrex 

with a Teflon-lid screw cap. The titrations were performed directly into 

the test tubes after a 2-hour digestion period at 150° C in an oven. The 

endpoint of the titration was considered to be the first sharp color 

change from blue-green to reddish brown. Mixing was done by a magnetic 

stirrer with a 1/2" stirrer bar. The buret used had a smallest division 

of 0.1 mL and a total volume of 25 mL. 

IGpisher Scientific, Cat. No. 13-689-25. 
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Individual and Total Organic Acids 

Besides the total volatile acids measured by the direct titration 

method, as described previously, the Individual organic acids were also 

measured using a gas chromatograph. A Hewlett-Packard^'^ chromatography 

system and data-processing software of Maximal^ chromatography 

Workstation (Version 2.1, 1985} were used In the study. The glass column 

used was 6 feet long by 2 mm In diameter and was packed with GP 60/80 

Carbopack C.l* The column was capable of separating ppm levels of 

2-methyl and 3-methyl butyric acids. Table 15 lists the GC operating 

conditions for the organic acids analyses. 

The samples for organic acids analysis were taken from the SMARs and 

immediately filtered with a fiber glass filter. The filtrates were 

acidified with concentrated phosphoric acid to pH 2-3 (sulfuric acid will 

destroy the column packing materials used in this study). The acidified 

filtrates were then preserved in 2-mL vials,20 which were covered with 

Teflon-coated lids and clamped with aluminum caps. A microsyringe^^ was 

used to withdraw samples from vials and adjusted to 1 mL for direct 

Injection into the column. Four standard solutions, which contained six 

^'^Hewlett-Packard, Ayondale, PA 19311. 

^®Dynamic Solution Corporation, Ventura, CA 93003. 

ISSupelco, Inc., Beliefonte, PA 16823-0048. 

20cat. no. 3-3121, Supelco, Inc., Bellefonte, PA 16823-0048. 

ZlMlcroliter series 700, Model #701-L, Stock #80300, Hamilton 
Company, Reno, Nevada 89520. 
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TABLE 15. GC operating conditions for volatile acids analysis 

Gas chromatograph 

Column 

Packing 

Detection limit 

Temperature 

Carrier gas 

Flowrate 

Detector 

Hydrogen/air flowrate 

Temperature 

Injection port temperature 

Sample size 

Data station 

Hewlett-Packard 5730A 

4 ft by 4 mm ID glass 

GP Carbopack C/0.3% Carbowax 
20 M/0.1 % H3PO4 

ppm level 

120° C 

Helium 

50 mL/min 

Flame ionization 

40/240 mL/min 

200° C 

200° C 

1.0 nh 

Maxima data station 

volatile acids of interest (acetic, propionic, iso-butyric, n-butyric, 

isovaleric, and n-valeric acid), were used to establish the calibration 

curves. Table 16 shows their concentrations. In some cases, where the 

2-methyl butyric acid was also identified, the average response factor of 

3-methyl butyric (isovaleric) and the n-butyric was used for determining 

the 2-methyl butyric concentrations. The Maxima data station allows for 

automatic data acquisition during the analysis. With the data station. 
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output signals can be retrieved to identify all of the possible peaks. 

These peaks were then re-integrated for peak areas. Without the data 

station, meaningful analysis would be difficult. 

TABLE 16. Volatile organic acids standard solutions in mg/L 

Volatile 
Acids Std 1 Std 2 Std 3 Std 4 

Acetic 50 250 500 1000 

Propionic 50 150 300 500 

iso-Butyric 10 50 100 150 

n-Butyric 10 50 100 100 

iso-Valeric 10 50 75 100 

n-Valeric 10 50 75 100 

Nitrogen and Phosphate 

Total Kjeldahl nitrogen and total phosphate were analyzed to 

determine if they were adequate in the feed milk solution for nutritional 

requirements. These tests were done by the Analytical Services 

Laboratory (ASL) at Iowa State University. The procedures of Standards 

Methods were followed using a Technicon Auto Analyzer.22 

22Technicon Industrial Systems, Tarrytown, MY 10591. 
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Metals (Li, Co, Ni, Ca, Mn, zn) 

All metals were measured using a Perkin-Elmer Atomic Absorption 

Spectrophotometry Systèmes with a flame emission <AE) method. Except 

Li+, all metals were determined by the Analytical Services Laboratory at 

Iowa State University. Li+ was determined for tracer studies and the 

other metals were for a nutritional check on the feed milk solution. 

Table 17 shows the AA operating conditions for L1+ analysis. 

TABLE 17. AA operating conditions for Li+ analysis 

Chopper mode Flame emission 

Burner head 2 and 3/4 inches 

Burning gases C2H2-N2O 

C2H2 pressure 8 psig 

N2O. pressure 30 pslg 

Flame wavelength 323.3 nm (VIS) 

Flame angle QO 

Slit width 0.7 nm 

Sensitivity 10.0 mg/L 

^^Model 305B, Perkin-Elmer Corporation, Norwalk, CT 06856. 
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Effluent samples from the clean-bed tracer studies were analyzed 

directly while samples from dirty-bed studies required filtration. 

Approximately 30-mL samples were collected at each sampling. Samples 

were then ionized by adding about 0.5 gm of NaCl. Five standard 

solutions of Li+ (0.05, 0.1, 0.5, 1.0, 2.0 mg/L as Li+) were used. The 

standards were run every 20 sample analyses and the two standard runs 

before and after the sample runs were averaged for calibration. A method 

of averaging ten consecutive determinations by GC was used for each 

sample to even the noise for better reproducibility. 
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RESULTS AND DISCUSSION 

Design and Operation 

Design of SMAR System 

The three SMARs used in this study were built with height to inside 

diameter ratios of 1.2, 4.1, and 14.3 for SMARs A, B, and C, 

respectively. The range of the ratios covered those used in many other 

pilot studies, such as 3.6 by Young and Dahab (1982), 12.2 by Song and 

Young (1985), and 13.1 by Young and McCarty (1969). Three full-scale 

SMARs, however, have very low ratios of 1.3 (Taylor, 1972), 0.7 (Witt et 

al., 1975), and 0.6 (Roe and Love, 1984). 

The height of SMAR C was 282.8 cm (9.3 ft) and might be the highest 

lab-scale SMAR ever studied. Most lab-scale SMARs have dimensions 

similar to those of Young and McCarty (1969) with a height of 180 cm (6.0 

ft) cuid a diauneter of 14 cm (5.5 in). Two full-scale SMARs packed with 

low-porosity stones are much deeper, with heights of about 20 ft (6.1 m) 

by Taylor (1972) and 30 ft (9.1 m) by Witt et al. (1979). One recently 

designed full-scale SMAR, termed the "shallow bed anaerobic reactor", has 

a height of 10 ft (3.3 m) and is packed with high-porosity cross-flow 

plastic media (Roe amd Love, 1984). The packing volume of the three 

SMARs used in this study is about 85 L, which is 2-5 times larger than 

most other pilot studies but êibout one-third the volume used by Young and 

Dahab (1982). 
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Operation of the SMAR system 

The suspended growth sampling ports appear to be properly sized for 

all the loadings studied, except for one run with the highest loading 

rate (Run 10a), in which the lowest sampling port of SMAR C was clogged. 

The attached growth sampling devices failed to seal properly due to 

degradation of the internal o-rings under long-term exposure to the 

anaerobic environment. This was especially serious in SMAR C at the 

lower sampling heights, probably due to higher hydrostatic pressures. 

The use of the bottom distribution plates and the attached growth 

sampling devices to prevent short circuiting appears appropriate as 

indicated in the clean-bed tracer study with no air recycling (Run Oc). 

However, as also indicated in the clean-bed tracer study with air 

recycling (Run OcG), it seems that the top distribution plates should 

have been designed to reduce short circuiting under operating conditions. 

The packing used in this study was plastic Flexiring with a nominal size 

(Dp) of 5/8 inch (16 mm). This gives I.D./Dp ratios of 28.0, 18.6, and 

12.3 for SMARs A, B, and C, respectively. The I.D./Dp ratio should be 

greater than 8 to minimize wall effects (Young, 1985). 

The entire line-up of the SMAR system appears to be appropriate 

after several corrections during the first few months of operation. This 

is discussed briefly below. A T-tube was initially used for each SMAR to 

serve as a gas-liquid separator at a height of about 50 cm above the 

common discharge reservoir. The H2S gas scrubbers were placed about 50 

cm above the T-tubes. It was found that liquid was carried over through 
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the gas line and flooded the H2S gas scrubbers. Also, the siphon breaks 

often spilled and resulted in inconsistent gas measurement. Replacing 

the T-tubes with three 500-mL respiratory bottles and placing each bottle 

at the effluent height of each SMAR solved the problem. 

The use of rotameters to measure gas recycle flowrate in the latter 

phases of the study created some unexpected problems. The gas produced 

was wet at the operating temperature of 35° C, even after passing the gas 

through a water trap. Measurement of the wet gas recycle flowrate had 

never been possible because the floats in the glass tubes of the 

rotameters often got stuck. Removal of the water vapor from the gas with 

a desiccating agent, such as CaCl2, is possible but requires very 

frequent replacement. Also, rotameter pressure reducers cannot be used 

for flow adjustment since they created back pressure and caused spilling 

in the siphon breaks. 

The positive displacement Masterflex pump was not suitable for gas 

recycle to provide continuously smooth flow for accurate flowrate 

measurements using rotameters. Two big glass bottles (10 L) were then 

installed before and after the rotameters to dampen the surging, but 

accurate flowrate measurement with the rotameters was still difficult. 

Consequently, gas recycle flowrate had to be estimated by counting the 

rpm of the pumping rate and multiplying the rpm with mL/revolution of the 

tubing used. This is not likely to be accurate when the tubing is out of 

shape after a period of operation. 
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H2S gas scrubbers were prepared by filling FeaOa-coated wooden chips 

in 1000-mL glass bottles. The bottles often turned black within a few 

weeks, especially during operation at high loading rates. Uncovering of 

the bottles revealed that the scrubbers were not efficiently used due to 

an uneven packing of the wooden chips. On several occasions, packing in 

scrubbers was found to be too tight and created back pressure to cause 

spilling in siphon breaks. It is felt that wooden chips are not suitable 

to make efficient scrubbers due to their irregular shapes. Iron sponge 

with a proper size opening might be a better material for more efficient 

scrubbers. 

The use of the dilution tank was the right choice. It was initially 

thought that direct injection of the stock solution and dilution tap 

water into the influent line was better, since this could save any 

routine cleaning of the dilution tank, which could easily allow growth at 

35° C. The direct injection method was used by Young and his associates 

(Young and McCarty, 1969; Young and Dahab, 1982; Song and Young, 1986). 

However, it was found that, with the substrate milk solution, uniform 

stock feeding with the Masterflex pumps was not possible due to 

deposition of milk in the tubes. The use of the dilution tank minimized 

the problem. 

The SMAR system was operated for 415 days from the first seeding. 

The most serious and frequent operating problem was the clogging in the 

stock line. It was estimated that the clogging occurs in at least 50 

day-times and caused tremendous delays. It was then decided to screen 



www.manaraa.com

129 

the stock solution after it was prepared and clean the stock tank and 

stock line on a more frequent and routine basis. However, this did not 

completely solve the problem. The problem was inherent in the 

precipitating nature of the milk solution, especially when the 

concentrations of the stock solution increased to 150 g COD/L or above, 

as the loading rates Increased. Sometimes the clogging occurred within 

hours. 

In the latter phases of this study, it was also found that the milk 

solution coagulated and deposited in the bottom zone of the SMARs, 

especially for the SMAR C. It is felt that, although the powdered milk 

has a well-balanced nutrition and is relatively cheap, it is not suitable 

for the study like this, which required the use of a highly concentrated 

stock solution, in addition, preparation of a well homogenized milk 

solution with the powdered milk is laUoorious and time-consuming without a 

good mixing device. 

Analytical Methods 

The two analytical methods developed in this study, the acetoclastic 

methanogenic activity (AMA) test and the closed-reflux titration-

calibration curve (TC) method for COD analysis, are discussed below. 

AMA Test 

The proposed AMA test procedure (Appendix C) was used to analyze 

over a hundred samples with a fair success rate. In general, the 
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anaerobic procedures of N2 gas purging and sulfide addition are adequate 

in providing the anaerobic requirement. Stabilization for one hour after 

seeding is adequate for the depletion of air contamination obtained in 

sample transfer. Gentle hand mixing appears to be appropriate in data 

reproducibility. Reagent blank controls (no seed addition) often gave a 

vacuum reading of 1-2 cm M.L. (manometer liquid), probably due to CO2 

adsorption by the added sulfide. The vacuum became stable after about 

one-hour incubation. 

A study was conducted to determine the reproducibility of manometer 

calibration and the effect of Incubated volume on manometer calibration. 

Acetylene tetratbromide (C2H2Br4) with a yellow dye added was used for the 

mamometer liquid. This gives the manometer liquid a density of about 

2.96 g/cm3. Three 450 mL, one 460 ml, and one 440 mL were used for the 

incubation volume. The calibration procedures listed in Appendix C were 

followed, except that air was Injected in, instead of being drawn out. 

Figure 20 shows the calibration curves for the five runs used for 

manometer calibration. It can be seen from the curves that a greater 

incubation volume causes a smaller slope (Avg/Ah), and vice versa. Table 

18 gives results of the least squares linear regression of the five 

calibration curves in Figure 20. The slopes (ùv/ùh) for the three 450-mL 

runs are essentially the same. All the runs show an almost perfect 

linear correlation. 

One sample, obtained from SMAR A, was analyzed by four repetitions 

to determine the reproducibility of the AMA test. Figure 21 shows the 
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FIGURE 20. Effect of incubation volume on manometer calibration for AMA test, 
showing a greater slope with a smaller incubation volume, and vice 
versa 
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TABLE 18. Reproducibility study for manometer calibration 

#Run Incubation 
volume 

(mL) 

Slope 

(mL/cm) 

Intercept 

(mL ) 

Corr. 
coeff. 

( - )  

Volume 
deviat. 
(%) 

Slope 
devlat. 
(%) 

1 450 0.334 -0.131 1.000 0.0 0.0 

2 450 0.334 -0.299 0.999 0.0 0.0 

3 450 0.334 -0.235 0.999 0.0 0.0 

4 460 0.298 -0.186 1.000 2.2 -10.8 

5 440 0.351 -0.103 1.000 -2.2 5.1 

specific methane production curves. In general, the curves show a 

pattern of starting a short period of irregular gas production followed 

by a linear gas production. The linear gas production lasts for 5-6 

hours and starts showing some degree of retardation if the gas was not 

removed from the incubation flasks. The retardation was likely resulting 

from the build-up of pressure (20-25 cm M.L.) in the incubation flasks. 

The least squares linear regression of the linear sections of the 

curves indicates a correlation coefficient of over 0.99 for all four 

repetitions. The coefficient of sample standard deviation of AMA is 6.5% 

with a mean AMA of 0.39 L CH4 (STP)/gm VSS/d. 
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TÇ method for COD Analysis 

An experimental study was conducted to make a comparison between the 

TC method and the closed-reflux titrlmetric method of Standard Methods 

with regard to reproducibility, speed, and variations in analyst for both 

high and low COD samples. The samples used for analysis were made using 

non-fat dry milk (NFDM). The low seuople was estimated to have a strength 

of about 400 mg/L COD and the high sample a strength of about 1000 mg/L 

COD. The high NFDM sample required a dilution ratio of 2.5 to be within 

the measuring capacity of the Standard Method. Three repetitions were 

analyzed for both the low and high COD NFDM samples for each method. Two 

blanks for both the Standard and TC method and two FAS standardizations 

for the Standard Method were done along with the sample analyses. 

Table 19 gives the COD analysis results performed by two operators. 

One is considered to be more skillful with the TC method. A comparison 

of the COD values shows that the results are close for the standards and 

samples between these two methods, except for the low NFDM samples done 

by operator A with the TC method. Even though the COD of the low NFDM 

sample done by operator A with the TC method gives a higher COD result, 

it appears to have the same degree of reproducibility as the other runs. 

Figure 22 shows the two calibration curves obtained by the two 

operators with the TC method. Both curves show an almost perfect least 

squares linear regression with a correlation coefficient of 0.9998 and 

0.9999 and a y intercept of 3.9 and 8.2, respectively. This suggests 

that the standard solutions were properly prepared and that the autopipet 

gave good reproducibility. 
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TABLE 19. Reproducibility and comparison study for TC 
method, COO In mg/L 

Operator A Operator B 

Sample Standard* TC Standard TC 
ID Method Method Method Method 

Std 50b 54 53 49 ERROR 

Std 100 100 98 115 98 

Std 250 255 243 254 246 

Std 500 - 508 - 509 

Std 1000 - 998 - 997 

Low NFDM IC 354 386 362 363 

Low NFDM 2 355 378 , 369 365 

Low NFDM 3 355 383 360 365 

High NFDM 1 928d 940 930 929 

High NFDM 2 940d 930 941 931 

High NFDM 3 932d 943 937 926 

^Standard Method 508B, closed-reflux, tltrlmetrlc method. 

^Standard solutions of potassium hydrogen pthalate. 

^Non-fat dry milk solutions, 3 repetitions. 

^Samples were analyzed with a dilution rate of 2.5. 
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FIGURE 22. Calibration curves for TC method done by two operators 
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The results in Table 19 were used for a statistical analysis. As 

shown in the Table 20, the coefficient of variation (Cv) obtained with 

the TC method is higher than the coefficient of variation with the 

Standard method for operator A but lower for operator B. This suggests 

that the TC method developed in this study is at least as good as the 

Standard Method with regard to reproducibility. There was no significant 

difference in the reproducibility between the low and high NFDM samples 

being analyzed by both methods. 

As also shown in the Table 20,  the total setup time with the TC 

method for both operators was significantly reduced, with a time saving 

of 5-9 minutes out of a total run time of 20-40 minutes for analyzing 5 

standards and 6 samples with 2 blanks. The setup time was defined as the 

time required to add the samples, dichromate solution, and sulfuric acid 

reagent to all of the test tubes used in each method. This suggests an 

advantage for the TC method when dealing with a large number of samples. 

There are several other advantages to the TC method developed in 

this study. First, a calibration curve can always be established with a 

constant slope, even for a range of COD concentration not applicable to 

Beer's law. Second, with the establishment of the calibration curve, the 

system error due to that such as inadequate recovery can be minimized. 

And third, there is no need for standardizing the FAS titrant. However, 

caution should be taken to ensure that the volume used for samples, 

standards, blanks, and all reagents are close to the nominal volume 

specified in this method. This is especially important for dichromate in 

order that the maximum COD measuring capacity is maintained. 
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TABLE 20. Statistical analysis of COD data in Table 
19 

Standard Method TC Method 

Sample X* s^ Cv° X s Cv 
ID (mg/L) (rag/L) (%) (mg/L) (mg/L) (%) 

(Operator k) 
Low 
NFOM 355 1 0.2 383 4 1.0 

High 
MFDM 933 6 0.6 938 7 0.7 

TimeP 
used 22 min. 28 sec. 17 min. 35 sec. 

(Operator B) 

Low 
NFDM 364 5 1.3 365 1 0.4 

High 
NFDM 936 6 0.6 929 3 0.3 

TimeA 
used 37 min. 41 sec. 28 min. 27 sec. 

% = Sample average. 

^s = square root of [(Xi-X)2/(n-l)]. 

^Cv = Variation of coefficient =(100)(s/X). 

^Time spent for samples and reagents addition only. 
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Tracer Studies 

Two clean-bed tracer studies (before seeding) and two dirty-bed 

tracer studies (after seeding) were conducted during four different 

testing periods. All the studies were done with a retention time of 

about of 0.5 day, which was the shortest retention time used in this 

study. The responses of lithium concentrations (Ci) were normalized with 

the average influent lithium concentration (Co = Total slug input/SMAR 

clean-bed liquid volume) and the time (Ti) with the theoretical retention 

time (Tj • SMAR clean-bed liquid volume/flowrate). Figures 23 through 26 

compare the slug responses of the three SMARs for the four tracer 

studies. 

All the response curves were analyzed for the mean time (T, the time 

length between the injection time and the centroid of the area under the 

curve), the standard deviation (o), and the recovery ratio (R), using the 

following expressions: 

T = Z(taiCaiAt) 

Z(CaiAt) 
(51) 

0' 
7 - Zt(bl-T)2c,lAt] 

(52) 
Z(CaiAt) 

R = Z(CaiAt) (53) 

where, 
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FIGURE 23. Clean-bed tracer slug responses with no gassing. Run Oc 
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FIGURE 24. Clectn-becl tracer slug responses with air gassing. Run OcG (gassing G 
of about 40 1/s) 
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tai = (ti + ti-i)/2 

Ati » ti - ti-i 

Cai = (Ci + Ci-i)/2. 

The T and a of each response curve were then used to calculate the 

dispersion number (Ng) using a longitudinal dispersion model (Levenspiel 

and Smith, 1957): 

a2 = 2T2[Nd - Md^d-e^d)] (54) 

Table 21 shows the results of Ng, T, T/Td, and the recovery rate (R) for 

the four tracer studies. 

Clean-Bed Studies 

Figures 23 and 24 were obtained under clean-bed conditions (before 

seeding) with and without air gassing, respectively. The following 

criteria for Ng are used to justify the flow patterns: 0 plug flow, 

between 0 and 0.002 small dispersion, between 0.002 and 0.025 

intermediate dispersion, between 0.025 and 0.2 large dispersion, and « 

completely mixed flow (Weber, 1972). With the flowrate tested under no 

gassing. Figure 23 shows that the three SMARs had about the same degree 

of dispersion with a dispersion number of 0.10-0.12. Based on the T/Tj, 

SMARs A and B had very little short-circuiting, while SMAR C (the tallest 

column) had a slight short-circuiting, probably due to a higher 
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Run# SMAR Plowrate 
(mL/min) 

Td* 
(hr) 

Casing 
(mL/L/min) 

Gb 
(1/s) 

NdC 
(-) (cn^^in) 

re 
(hr) 

T/Td 
(-) 

Rf 
(%) 

A 146 9.7 0.0 0 0.1 0.5 9.6 1.0 106 
Oc B 146 9.2 0.0 0 0.1 2.9 9.2 1.0 107 

C 146 9.1 0.0 0 0.1 15.8 8.4 0.9 109 

A 167 8.5 10.0 409 0.9 5.7 6.6 0.8 93 
OcG B 167 8.0 6.0 409 0.8 22.9 6.5 0.8 96 

C 167 7.9 3.0 409 0.3 48.0 7.5 1.0 99 

A 109 12.9 1.5 1(̂  0.3 1.2 9.0 0.7 63i 
4c B 109 12.3 1.5 20h 0.3 5.5 9.1 0.8 80. 

C 109 12.1 1.5 30h 0.2 17.5 10.2 0.8 561 

A 110 12.8 3.0 15ÎJ 1.0 4.3 7.6 0.6 80 
8c B 110 12.2 3.0 25h 0.5 10.4 8.7 0.7 89 

C 110 12.0 3.0 40h 0.9 92.1 7.2 0.6 81 

^Retention time, based on clean-bed liquid volume. 

^ean velocity gradient. 

^Dispersion number^ Da/(vxL). 

dBddy diffusion coefficient. 

Grime length between injection and centroid. 

^Lithium recovery ratio. 

9By external air gassing. 

^By internal biogas mixing. 

ÎDue to loss in injection. 
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superficial velocity. The little short-circuiting for the three SMARs 

under clean-bed conditions indicates that the bottom distribution plates 

and the dispersion rings were properly designed. 

Under external air gassing conditions, SMARs A and B had a very 

large dispersion with some degree of short-circuiting (Figure 24). 

Interestingly, with passing, SMAR C became less short-circuiting, 

although the dispersion number (Ng) increased. Comparison between 

Figures 23 and 24 shows that single point air gassing at a mean velocity 

gradient (G) of about 40 1/s had a significant effect on the SMAR 

hydraulics; and the shorter the SMAR height, the greater the effect. 

Both clean-bed tracer studies had tracer recovery ratios of almost 100% 

for the three SMARs. 

Dirty-Bed Studies 

Figures 25 and 26 show the slug responses for the two dirty-bed 

studies with a COD loading rate of about 4 and 8 g COD/L/d, respectively. 

These two studies illustrate the SMAR hydraulic pattern under actual 

operating conditions, i.e., with (internal) gas mixing and biomass 

accumulation. In general, the hydraulic pattern was characterized by a 

large dispersion (Ng ot 0.2-0.3) at about 4 g COD/L/d and a very large 

dispersion (Nj 0.5-1.0) at about 8 g COD/L/d. Compared with the clean-

bed study with air gassing, both the dirty-bed studies indicate that 

biomass accumulation could cause significant short-circuiting with a T/Tj 

of 0.7-0.8 at a COD loading rate of about 4 g/L/d, and a T/Tj of 0.6-0.7 
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at about 8 g COD/L/d; and the greater the dispersion number, the greater 

the short-circuiting. 

The configuration of the SMAR had significant effects on both Ng and 

T/Td under dirty-bed conditions. Under operating conditions. It appears 

that the taller the SMAR, the less the short circuiting. However, at 

higher COO loadings (such as 8 g/L/d), SMARs that are too tall (such as 

SMAR C), might develop very serious short-circuiting due to a higher gas 

superficial velocity and accumulation of concentrated blomass In the 

lower parts of the SMAR. The slug responses of the four studies were 

also plotted for each SMAR in Figures 27 through 29. 

The tracer recovery ratios of the two dirty-bed studies ranged from 

80 to 88%, except for SMARs A and C with the 4 g/L/d run. These two 

exceptions were due to a loss in tracer Injection and should not affect 

the estimation of Ng and T/Tg. However, inadequate recovery due to 

adsorption or absorption of the blomass could cause over-estimation of Ng 

and T/Td. 

Start-up and Acclimation 

First Seeding 

The start-up and acclimation procedures described in the previous 

chapter on Equipment and Substrate were followed. SMARs B and C were 

fully seeded. SMAR A was seeded only to about 70 L due to a shortage of 

seed. Warm tap water was pumped to SMAR A to make up for the full 

volume. It was estimated that 2.4 kg of solids were seeded to SMARs B 

and C and 2.1 kg to SMAR A, assuming a solids concentration of 3%. 
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FIGURE 28. Trac^ slug responses for SMAR B, Run Oc (clean bed, no gassing). 
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After seeding, the system was allowed to stand for 4 days to 

eliminate oxygen. The system was then fed with a solution of equal 

amounts of COD (about 60 g) of sodium acetate and NFDM in a batch mode 

once a day (for about 30 minutes) for 3 days before continuous feeding 

began. Continuous feeding started on day 8 after seeding with a COD 

loading rate of about 0.1 g/L/d and retention time of about 2.0 days. 

Since the seeding was obtained from an anaerobic digester, 

acclimation in this study should have meant the requirement of (1) 

adapting the fermentative and acetogenic, but not the methanogenic, 

bacteria to the new NFDM substrate; and (2) establishing a new population 

balance among the three groups of bacteria at the operating conditions. 

A certain amount of gas production was observed soon after seeding 

for all three SMARs, indicating a successful seeding. During the first 

few days after seeding, SMAR A had a gas production rate of about 15 

L/day,24 while SMARs B and C produced about 30 L/day. SMAR A produced 

less gas because it contained less seed. By the time of continuous 

feeding on day 8, the gas production rate was at about 10 L/day for all 

three SMARs. On day 14, approximately 3.0 L/day was metered for all 

SMARs with an initial COD loading rate of about 0.1 g COD/L/d. The COD 

loading was then increased to about 0.2 g/L/d on day 16 and then to about 

0.4 g/L/d on day 21, with a corresponding gas production of about 3 and 6 

L/d, respectively, for all SMARs. 

Z^The standard conditions of 0° C and 1 atm are hereafter used for 
the daily average gas production in this study, unless specified. 
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During the initial acclimation period, the gas production for SMARs 

A and B were essentially the same at a rate of about 10 L/d (with a COD 

loading of about 0.4 g/L/d) until day 30, which was the 5th day after the 

loading was increased to about 1.5 g/L/d on day 26, with a greater gas 

production rate for SMAR A. After the 21st day, SMAR C, which is the 

tallest column, started showing a lower gas production rate than SMARs A 

and B, despite SMAR C being seeded heavier than SMAR A. The initial 

acclimation pattern is interesting and suggests that a greater 

hydrostatic pressure, as resulting from a deeper SMAR, might be a likely 

cause of inhibition in initial acclimation (Appendix D). 

Unfortunately, the initial acclimation could not be further studied 

because gas production started dying off on day 31 due to a lack of 

buffering. On day 35, analyses on the effluent showed a pH of 5.5 and a 

COD greater than 1000 mg/L for all SMARs. Sodium bicarbonate was then 

added to the stock solution to give an alkalinity of 30 gm/L, as CaCOs, 

on day 36. This unexpectedly increased the stock feeding rate to about 

4.0 g/L/d (from 1.5 g/L/d), due to the addition of bicarbonate which 

reduced pump friction. Gas analyses on day 38 showed a methane 

percentage of about 30% for all the SMARs. The failure of the Initial 

acclimation indicates that, without the addition of alkalinity, the SMAR 

system could not be acclimated to a COD loading rate higher than 1.5 

g/L/d with the NFDM solution. The influent was shut off on day 40. 

It was then decided to take the opportunity to study restarting 

acclimation by intensively analyzing effluent total volatile acids (TVA) 
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and total alkalinity (TAlk), using the dual titration method of DlLallo 

and Albertson (1961). The monitoring technique of TVA/TAlk, suggested by 

USEPA (1976) for digester operation, was also used. More bicarbonate 

(about 80 gm/d) was added to the dilution tank with warm tap water and 

pumped Into the SMARs In a batch mode on days 43, 44, and 47. 

The effluent TVA maintained at a level of about 1100 mg/L with a 

TVA/TAlk ratio of about 0.9 between days 42 and 47 for all the SMARs 

(Figure 30). The TVA/TAlk ratio was far beyond the range of 0.1-0.35, 

suggested by USEPA for successful digester operation. Despite showing a 

trend of decreasing TVA/TAlk ratio to about 0.7 on day 49, gas production 

was still extremely low at about 2.0 L/d for all the SMARs. This 

suggests that the restoration of the three SMARs during initial 

acclimation by simply adding bicarbonate was slow and not practical. 

Second Seeding 

It was then decided to partially reseed all the SMARs on day 50. 

Approximately 20 L of screened primary digester liquid (from the City of 

Ames Wastewater Treatment Plant) was pumped to each SMAR. In order to 

disperse the volatile acids accumulated in the lower parts of the SMARs, 

gas was recycled with a mean velocity gradient of about 20 1/s right 

after reseeding. The partial reseedlng with gas recycle was remarkably 

effective. On the second day after reseedlng, effluent TVA/TAlk dropped 

to about 0.15 (Figure 30) with an Increase of TAlk to about 6000 mg/L as 

CaC03, and the effluent pH Increased to about 8.0, for all the SMARs. 
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Continuous feeding resumed on day 51 with a retention time of 2 days 

and a COD loading rate of about 0.2 g/L/d. An alkalinity addition of 1/4 

of the feed COD was used. Gas recycle stopped on day 52 due to 

difficulties in metering the net gas production rate. Gas production 

started to take off and reached about 5 L/d on day 60 for all SMARs. By 

day 70r gas production had reached about 10 L/day at a COD loading rate 

of about 0.5 g/L/d. Gas analyses on day 72 showed methane content of 

about 88% for SMAR A and 85% for SMARs B and C. Interestingly, during 

the initial acclimation after the second seeding, SMAR C again produced 

the least gas, even under gas recycle conditions. However, there was no 

significant difference in gas production among the three SMARs after the 

initial period (Appendix D). The three SMARs were well acclimated on day 

70 and ready for steady-state studies. 

Pseudo Steady-State Performance 

Pseudo steady state was assumed to be achieved at a specific 

operating condition if the gas production rate was relatively constant 

for a period of at least three hydraulic retention times under operation. 

Seventeen steady-state runs were conducted during the entire study. 

Table 22 lists the operating conditions of these steady-state runs. 

In Table 22, the hydraulic retention times (HRT, hr) and COD loading 

rates (g/L/d) were calculated based on the clean-bed liquid volume at the 

packing height of each SMAR, i.e., the height of the highest sampling 

port. Alkalinity addition was based on the ratio of total 
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TABLE 22. SMAR pseudo steady-state operating conditions 

Alka Qin CODin SMAR HRTb OLRC 
#Run Day (g/g) (mL/min) (g/L) (hr) (g/L/d) 

A 45.8 1.00 
la 225-228 1/4 27.5 1.91 B 46.4 0.99 

C 46.8 0.98 

A 45.2 2.19 
2al 173-177 1/4 27.9 4.13 B 45.8 2.17 

C 46.3 2.14 

A 46.3 1.95 
2a2 250-257 1/4 27.2 3.76 B 46.8 1.93 

• C 47.3 1.91 

A 23.2 1.82 
2b 241-248 1/4 54.4 1.76 B 23.4 1.80 

C 23.7 1.78 

A 11.4 1.84 
2c 258-269 1/4 110.8 0.87 B 11.5 1.81 

C 11.6 1.80 

A 43.7 4.28 
4a 309-319 1/40 28.8 7.79 B 44.2 4.23 

C 44.7 4.18 

A 23.7 3.86 
4bl 274-278 1/4 53.1 3.82 B 24.0 3.82 

C 24.3 3.78 

A 22.6 4.42 
4b2 287-294 1/10 55.6 4.17 B 22.9 4.37 

C 23.2 4.32 

A 11.7 3.52 
4c 295-300 1/20 107.5 1.72 B 11.9 3.48 

C 12.0 3.44 

^Added alkalinity as CaCOs/influent COD. 
^Hydraulic retention time based on clean-bed liquid volume. 
^Organic loading rate = influent COD/HRT. 
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TABLE 22. (continued) 

Alk» Qln CODln SMAR HRTb OLRC 
#Run Day (g/g) (mL/min) (g/L) (hr) (g/L/d) 

A 23.4 6.47 
6bl 336-345 1/40 53.9 6.31 B 23.7 6.40 

C 23.9 6.33 

A 22.8 6.55 
6b2 346-361 1/40 55.3 6.22 B 23.1 6.47 

C 23.3 6.41 

A 46.0 8.90 
8a. 326-335 1/40 27.4 17.07 B 46.6 8.80 

C 47.1 8.71 

A 43.9 10.20 
10a 407-410 1/40 28.0 18.66 B 44.4 10.08 

C 44.9 9.98 

A 43.7 9.97 
lOaGl 411-412 1/40 28.8 18.18 B 44.3 9.86 

C 44.7 9.75 

A 46.2 9.22 
10aG2 413-415 1/40 27.3 17.74 B 46.7 9.12 

C 47.2 9.02 

A 11.2 9.77 
10c 383-391 1/40 112.7 4.55 B 11.3 9.65 

C 11.4 9.55 

A 12.0 11.87 
12c 398-406 1/40 104.6 5.96 B 12.2 11.73 

C 12.3 11.61 
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alkalinity/influent COD (TAlk/COD). Lower alkalinity ratios were used at 

higher COD loading rates. 

Treatment Performance 

Treatment performance of the three SMARs was evaluated and compared 

on the basis of TCOD ranoval rate in g/L/d and methane production rate in 

L CH4 (STP)/L/d. SCOD removal rate in g/L/d and TSS effluent rate in 

g/L/d were also calculated for comparison. Because of the slight volume 

difference among the three SMARs, TCOD removal rate, SCOD removal rate, 

and TSS effluent rate were normalized with the clean-bed liquid volume at 

the highest port of each SMAR. The methane production rate was 

normalized with the total clean-bed liquid volume. Table 23 shows the 

pseudo steady-state performance for the three SMARs. 

Theoretically, TCOD removal rate and CH4 production rate are related 

with a constant ratio of 0.35 L CH4 <STP)/gm TCOD removed. However, 

there is some difference between these two criteria. At steady state, 

TCOD removal rate accounts for the total COD removal in the liquid phase, 

while CH4 production rate accounts for only the part of removal recovered 

as methane in the gas phase. The COD removal by hydrogen-producing 

acetogens will be accounted for in the liquid-phase TCOD removal, but 

will not be accounted in the methane production if the hydrogen gas is 

not utilized by methanogens, or by sulfate-reducers, or simply not 

utilized. Normally, hydrogen in the exit gas is in the order of 10"* atm 

(or about 0.01% in the exit gas). Therefore, the difference between 



www.manaraa.com

160 

TABLE 23. SMAR pseudo Steady-State performance 

Run SMAR SCODr* 
(g/L/d) 

TCODr» 
(g/L/d) 

Eff.a 

TSS 
(g/L/d) 

Methane 
(%) 

Methane^ 
(L/L/d) 

Methane^ 
recovery 
(L/g) 

Out/In4 
(-) 

A 0.87 0.84 0.03 80.2 0.28 0.34 0.97 
la B 0.92 0.91 0.01 80.0 0.31 0.34 0.96 

C 0.93 0.91 0.01 80.0 0.28 0.30 0.87 

A 2.12 2.08 0.03 84.0 0.65 0.31 0.89 
2al B 1.98 1.93 0.05 82.9 0.56 0.29 0.84 

C 2.03 1.95 0.08 83.2 0.61 0.31 0.91 

A 1.90 1.84 0.04 68.7 0.56 0.31 0.88 
2a2 B 1.83 1.78 0.06 68.4 0.60 0.34 0.97 

C 1.87 1.81 0.05 68.8 0.62 0.34 0.98 

A 1.74 1.66 0.08 70.2 0.51 0.31 0.89 
2b B 1.71 1.64 0.05 70.5 0.58 0.35 1.01 

C 1.73 1.67 0.04 70.8 0.60 0.36 1.03 

A 1.62 1.50 0.09 77.0 0.33 0.22 0.70 
2c B 1.61 1.15 0.38 77.1 0.43 0.38 1.05 

C 1.71 1.62 0.06 77.1 0.43 0.27 0.79 

A 4.20 4.03 0.13 63.3 1.27 0.32 0.91 
4a B 4.14 3.83 0.33 64.1 1.30 0.34 0.97 

C 4.10 3.99 0.11 64.7 1.38 0.35 0.99 

A 3.67 3.57 0.13 65.5 1.02 0.29 0.83 
4bl B 3.64 3.49 0.21 66.0 1.12 0.32 0.92 

C 3.67 3.58 0.12 65.4 1.15 0.32 0.92 

A 4.25 4.09 0.12 64.4 1.11 0.27 0.79 
4b2 B 4.11 3.85 0.29 65.4 1.27 0.33 0.95 

C 4.13 4.03 0.10 64.0 1.24 0.31 0.89 

A 3.30 3.13 0.45 71.4 0.93 0.30 0.86 
4c B 3.37 3.08 0.69 70.5 1.03 0.33 0.96 

C 3.32 3.17 0.42 71.3 1.02 0.32 0.93 

^Based on the clean-bed liquid volume to the highest ports, 

^ased on the total reactor clean-bed liquid volume. 

(^Theoretical value=0.35 L CH4 <STP)/g TCODr. 

d(Methane COD + Effluent TCOD)/(Influent COD). 
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TABLE 23. (continued) 

Eff.a Methane^ 
Run SMAR SCODr* TCODr® TSS Methane Methane^ recovery Out/Ind 

(g/L/d) (g/L/d) (g/L/d) (%) (L/L/d) (L/g) ( - )  

A 6.16 5.21 1.25 60.9 1.83 0.35 1.00 
6bl B 6.22 5.39 1.41 60.4 1.91 0.36 1.01 

C 6.13 5.58 0.95 61.2 2.06 0.37 1.05 

A 6.29 5.54 0.88 60.3 1.88 0.34 0.97 
6b2 B 6.31 5.33 0.69 60.9 1.97 0.37 1.04 

C 6.23 5.90 0.27 61.1 2.02 0.34 0.98 

A 8.69 8.01 0.66 58.5 2.30 0.29 0.84 
8a B 8.70 7.62 1.07 58.0 2.31 0.30 0.88 

C 8.53 7.63 0.88 58.9 2.57 0.34 0.97 

A 9.91 8.32 1.39 55.0 2.49 0.30 0.88 
10a B 9.86 8.28 1.52 55.6 2.68 0.32 0.94 

C 9.79 8.89 0.99 53.4 2.37 0.27 0.79 

A 9.73 8.05 1.63 67.8 3.10 0.39 1.08 
lOaGl B 9.69 8.04 1.60 68.5 3.18 0.40 1.11 

C 9.64 8.76 0.86 67.5 3.00 0.34 0.98 

A 9.07 7.07 1.51 60.5 2.65 0.38 1.05 
10aG2 B 9.00 7.99 0.93 60.8 2.87 0.36 1.02 

C 8.92 8.45 0.49 59.7 2.60 0.31 0.89 

A 8.76 8.05 0.43 59.6 2.20 0.27 0.82 
10c B 9.25 8.73 0.42 59.4 2.41 0.28 0.81 

C 8.91 8.19 0.36 59.4 2.38 0.29 0.86 

A 10.73 9.26 1.39 57.3 2.39 0.26 0.80 
12c B 10.64 9.02 1.42 56.9 2.66 0.29 0.88 

C 10.75 9.71 1.31 56.4 2.76 0.28 0.84 



www.manaraa.com

162 

these two criteria of TCOD removal rate and methane production rate 

should be very small. However, It has been estimated that hydrogen 

methanogenesls can account for as high as 30% of the total COD removal 

for sewage sludge (McCarty and Smith, 1986). Therefore, when determining 

COD for samples obtained from the acetogen-actlve zone (such as the 

bottom zone of SMAR C), caution should be taken In the Interpretation of 

the COD removal data. This is especially true for heavily loaded 

systems. 

The TCOD removal rate (g/L/d) is a better index than SCOD removal 

rate in evaluating SMAR performance because the solids retention 

capability, which is important to SMAR performance, is also considered. 

Performance evaluation based on effluent TCOD concentration (mg/L) alone 

is not good because it is the mass TCOD removal rate that needs to be 

evaluated. It is worth noting that, under steady-state conditions, the 

difference between the TCOD removal rate and the SCOD removal rate 

measures the COD synthesis rate into biomass. 

In order to evaluate and compare the performance of the three SMARs, 

TCOD removal rates were plotted against COD loading rates (Figure 31) for 

all seventeen steady-state runs. It can be seen from the plot that, with 

the COD loading rate equal to or less than about 4 g/L/d, there was 

little difference in TCOD removal rate. With the COD loading rate 

greater than about 4 g/L/d (with or without gassing), SMAR C performed 

slightly better, except for Run 10c, in which SMAR B performed better. 

The better performance of SMAR C became greater as the loading rate 
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Increased in the latter phases of this study. With no gas recycle, SMARs 

A and B showed little difference in TCOD removal rate for all the loading 

rates tested. With gas recycle, SMAR B performed better than SMAR A in 

TCOD removal rate. 

SCOD removal rate was also plotted vs. COD loading rate in Figure 

32. With no gas recycle, there was little difference among the three 

SMARs in SCOD removal rate. Comparisons between the plot of TCOD removal 

rate and the plot of SCOD removal rate reveal that the better performance 

of SMAR C was likely related to a lower effluent TSS, which results in a 

lower effluent TCOD. This was especially true for Runs 10c and 12c, in 

which the TCOD removal rates of SMARs A and B dropped abruptly to about 1 

g/L/d less than for SMAR C. 

With gas recycle (Runs lOaGl and 10aG2), SMARs B and C performed 

better in TCOD removal rate, while SMAR A was likely too short to 

efficiently retain solids, resulting in a lower TCOD removal rate, even 

though the SCOD removal rate of SMAR A did improve. The effects of gas 

recycle will be discussed in more detail later. 

Daily average methane production rates (L/L/d) and TSS effluent 

rates (g/L/d) were also plotted vs. COD loading rate, as shown in Figures 

33 and 34, respectively. Both the methane and TSS plots show that SMAR C 

performed somewhat better in producing more methane and having a lower 

effluent TSS. This supports the finding, as concluded from TCOD and SCOD 

plots, that the better performance of SMAR C was related to its better 

solids retention capability. 
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Steady-state treatment performance was also checked for the input-

output balance in Table 23. The ratio of methane production rate to TCOD 

removal rate for each steady-state run was calculated and compared to the 

theoretical value of 0.35 L CH4 (STP) produced/g TCOD removed. In 

generalr the calculated ratios were close to the theoretical value, 

except for those runs with COD loading rates greater than 8 g/L/d with no 

gas recycle (Runs 10a, 10c, and 12c), as shown in Figure 35. At high 

loading rates, it was noticed that a large amount of milk aggregates 

precipitated in the bottom zone of the SMARs. This might be the reason 

for the poor methane recovery ratios at the high loading rates. 

The ratio of [(Methane COD)+ (Effluent TCOD)]/(Influent COD) was 

also calculated in Table 23. The calculated ratios show the same fact of 

poor methane recovery at COD loading rates greater than about 8 g/L/d 

with no gas recycle. These two ratios increased to about their 

theoretical values with gas recycle (Runs lOaGl and 10aG2). 

Distribution of pH 

Appendix E lists data for pH, SCOD, TOA (total organic acids), TSS, 

and AMA at various sampling heights of the three SMARs for some selected 

steady-state runs. In general, SMAR A had a fairly uniform pH 

distribution for all runs studied while SMAR C had the widest variation, 

especially at high loading rates. This indicates that there was a 

fundamental difference in the operation of the three SMARs. 
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In SMAR A, the acid and methane formers were likely mixed together 

by the mixing effect of the gas produced. This is also evidenced by the 

distribution in SCOD and TSS, which will be discussed later. However, in 

SMAR C, as indicated by pH distribution, these two groups of organisms 

appeared distinctively stratified. For most of runs studied, the 

distinction occurred at a height of about 1.0-1.5 m of the SMAR C. It is 

interesting to note that the lowest pH in SMAR C often occurred at port 

#4 (91.4 cm), where TOA started to drop significantly (such as in Runs 

4a, 4bl, 6bl, 6b2, 8a, 10a, and 10c). In SMAR B, the distinction was 

smaller and often occurred at the lowest port (15.2 cm). However, an 

Increase in flowrate could push the lowest pH to a higher height (such as 

in Run 4c). 

Figure 36 compares pH distribution for different COD loading rates 

(Run 4a vs. 8a) with the same retention time (about 2 days) and 

alkalinity addition (alkalinity/COD ratio 1/40). An Increase in COD 

loading from about 4 to 8 g/L/d decreased the entire pH distribution for 

the three SMARs. The decrease in pH was greater in the lower portions. 

The pH decrease in the lower portions of SMAR C was the highest among the 

three SMARs. 

pH distribution is also examined for different flowrates (Run 10a 

vs. 10c) with the same COD loading rate (about lOg/L/d) and alkalinity 

addition (1/40). As shown in Figure 37, with the same COD loading rate, 

an increase in flowrate by four times decreases the entire pH 

distribution for SMARs A and B by almost 0.6 pH unit. This could be 
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explained by a lower existing alkalinity concentration at the higher 

flowrate, even though the same alkalinity/COD ratio was used. The 

response of SMAR C to the increased flowrate was quite different and 

requires a different explanation. At the higher flowrate, the influent 

COD concentration was lower and consequently resulted in a higher and 

more uniform pH distribution. However, because of the lower alkalinity 

concentration, as resulted from a shorter retention time at the higher 

flowrate, the pH distribution in the upper portions was still lower. 

Figure 38 compares Run 6bl (with alkalinity/COD ratio of 1/4) and 

Run 6b2 (with 1/40) for the three SMARs. They were operated at a COD 

loading rate of about 6 g/L/d and a retention time of 1 day. With 

increased alkalinity addition, pH increased almost in parallel for about 

0.2 unit over the entire range in height of SMARs A, B, and in the upper 

portions of SMAR C. Interestingly, pH distribution in the lower portions 

of SMAR C decreased. No possible explaination for this could be made. 

Distribution of SCOD and Volatile Acids 

SCOO distribution in general followed the same pattern as for the 

total organic acids <TOA) distribution (Appendix E). The TOA is defined 

as the sum of the C2-C5 volatile acids (Appendix F), expressed as acetic 

acid. In general, SMAR A was characterized by a more uniform SCOD and 

TOA distribution, while SMAR C had a high variation, especially at high 

COD loading rates. The highest variation in SMAR C often occurred at 

port #3 (61.0 cm) or #4 (91.4 cm), and the greater the COD loading rate 
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the greater the variation. As will be discussed in the following 

section, the highest variation in TSS distribution in SMAR C also often 

occurred at the same height. In many runs, SCOD concentration in some 

lower SMAR heights was lower, especially for the lower portions of SMAR 

C. This might be due to short circuiting or local deposition of NFDM 

solution in the SMARs. 

Figures 39 through 42 show the effects of loading conditions on SCOD 

and TOA distribution. As COD loading rate increased from about 4 g/L/d 

(Run 4c) to about 10 g/L/d (Run 10c) at a retention time of about 0.5 day 

(Figures 39 and 40), SCOD and TOA distribution of the three SMARs 

increased almost in parallel. However, at the same COD loading rate of 

about 10 g/L/d, an Increase in influent flowrate decreased the variation 

in both SCOD and TOA distribution (Run 10a vs. lOc in Figures 41 and 42). 

This was probably due to the lower influent COD concentration with the 

higher influent flowrate. 

Distribution of Solids and Activity 

Appendix E also lists data on total suspended solids (TSS) and some 

related acetoclastlc methanogenlc activity (AMA) at various SMAR heights. 

In general, TSS distribution in SMAR A was rather uniform, indicating a 

completely mixed hydraulic pattern created by the gas produced. In the 

runs with COD loading rates of less than about 6 g/L/d, the levels of the 

TSS distribution in SMAR A were aibout the same as in the upper zone of 

SMARs B and C. However, at higher COD loading rates (6 g/L/d or more), 
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the levels of TSS distribution in SMAR A became greater than in the upper 

zones of SMARs B and C. This indicates that SMAR A is too short (53.3 cm 

to the highest port) to be able to efficiently retain biomass as biomass 

concentration and biogas mixing intensity increase at the higher loading 

rates. 

TSS distribution in SMAR B was generally uniform at heights between 

port #3 (61.0 cm) and above. Although SMAR B had a height (121.9 cm to 

the highest port) of about twice that of SMAR A, TSS data for most runs 

studied (such as Runs 2a2, 2c, 4a, 4b2, 8a, and 10a) indicate that SMAR B 

was no better than SMAR A in retaining biomass in the system. 

Interestingly, most of these runs were operated at the longest retention 

time tested of about 2 days; therefore the solids uplifting should be due 

mainly to rising gas. The superficial velocity of the rising gas should 

be greater In SMAR B than in SMAR A because of the smaller cross-

sectional area of SMAR B. With the higher gas superficial velocity, SMAR 

B might not be better than SMAR A in retaining solids in the system. 

As expected, the tallest SMAR (SMAR C) showed the widest variation 

in TSS distribution. The TSS distribution was generally characterized by 

two distinct portions separated between port #4 (91.4 cm) and port #5 

(152.4 cm). This suggests that the maximum solids expansion height in 

the SMAR bottom zone was about 1.5 m. The height of the maximum TSS in 

SMAR C, unlike SMAR B which occurred exclusively at the lowest port (15.2 

cm), often occurred at port #2 (30.5 cm) or port #3 (61.0 cm). The 

maximum TSS concentration was about 1% (10,000 mg/L) for COD loading 

rates greater than 6 g/L/d studied. 
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TSS distribution was compared for different COD loading rates with 

the same influent flowrate in Figure 43 (Run 4a vs. Run 10a) and for 

different influent flowrates with the same COD loading rates in Figure 44 

(Run 10a vs. Run 10c). With the increased COD loading rates at the same 

influent flowrate. Figure 43 shows that all the TSS distribution 

increased in parallel, except for the lower parts of SMAR C. It also 

shows the ability of SMAR C to retain biomass in the bottom 40 cm. 

However, it is suspected that such a highly concentrated biomass might be 

resulting from the precipitation of the coagulated milk solution at the 

higher loading rate. With the increased flowrate at the same COD loading 

rate. Figure 44 shows that all the TSS distribution decreased in 

parallel, except for the bottom zone of SMAR C. With the increased 

flowrate, the wide variation in TSS distribution in the bottom zone of 

SMAR C decreased. This might be due to the combined effects of more 

dilute influent COD concentration and higher superficial velocity. 

Along with TSS data. Appendix E also lists AMA data for some 

selected runs. The AMA measures the maximum potential of methane 

production on acetate in L CH4 (STP)/g VSS/d. There data show that AMA 

distribution varies widely with different SMAR heights and loading 

conditions, especially for SMAR C, with a typical range of 0.10 to 0.70 

L/g/d. Assuming a maximum AMA of 1.0 L/g/d, as concluded from pure 

culture studies (Valcke and Verstraete, 1983), biomass activity could 

vary from 10% to 70% in their ability to produce methane on acetate. 

Figure 45 plots AMA vs. VSS for all the runs tested with the three SMARs. 
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It can be seen from Figure 45 that, with VSS less than 1 g/L, lower VSS 

results in higher AMA. However, with VSS greater than 1 g/L, AMA varies 

within a narrow range of 0.1 to 0.2 L/g/d. 

AMA distribution in SMAR A was rather uniform and the distribution 

level decreased as COD loading rates Increased as shown in Figure 46. 

For example, in Appendix E, AMA in SMAR A was about 0.60 for Run 2al (COD 

loading rate of about 2 g/L/d), about 0.20 for Run 4a (about 4 g/L/d), 

and about 0.10 for Run 6bl (about 6 g/L/d). AMA distribution in SMARs B 

and C was highly varied, especially at SMAR heights between 40 to 60 cm, 

where TSS varied most. In most runs of SMARs B and C, the lowest AMA 

often occurred at the lower heights, where higher TSS accumulated. 

However, in some runs (such as Run 4a, 6bl, 6b2), the lowest AMA occurred 

in the top portions of SMAR B. This might suggest that inadequate 

substrate concentration, as occurred in the top portions of the SMARs, 

could result in lower activity. Operation at a higher flowrate with the 

same COD loading rate could result in a general increase in AMA 

distribution (Figure 47). 

Effects of Gas Recycle 

In the latter phases of this study, as the COD loading rate 

increased to absout 10 g/L/d, it was decided to recycle the gas in the 

three SMARs. The purpose was to see whether the practice of gas recycle, 

commonly used in digester operation, could be any benefit to the SMAR 

systems, especially at high loading rates. This was done by recycling 
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the exit gas of each SMAR after H2S scrubbing and directly sparging the 

gas into each influent line using Masterflex pumps (Figure 13). The gas 

recycle study was done on two different occasions (Runs lOaGl and 10a62) 

using a recycle rate of about 12 mL/min in Run lOaGl and 24 mL/min in Run 

10aG2. The gas recycle rates account for about 3.5% and 7.0% of the 

total gas production rate. The COD loading rate was about 10 g/L/d with 

a retention time of about 2 days for both gas recycle runs. The measured 

gas recycle pressures at the bottom sparging points were about 3.2, 4.5, 

and 7.5 pslg (or 2.2, 3.2, and 5.3 m of H2O) for SMARs A, B, and C, 

respectively. The measured pressures were higher than the calculated 

water pressures of 0.60, 1.60, and 2.88 m of H2O for SMARs A, B, and C, 

respectively. 

The effects of gas recycle were remarkable. The methane percentage 

of the three SMARs increased to about 68% for Run lOaGl and 60% for Run 

10aG2 from about 55% for Run 10a. TCOD removal rates for all the SMARs 

were correspondingly Increased. The increase of methane percentage could 

be due to two different possible (biological and chemical) mechanisms. 

First (biological), hydrogen methanogenesls was somehow enhanced with gas 

recycle, in considering the fact that CO2 will be reduced with the 

production of CH4 in the H2/CO2 methanogenesls. Second (chemical), with 

enhanced hydrogen methanogenesls, the H2-producing acetogenesls was 

accordingly enhanced as a result of lower hydrogen partial pressure. 

This could also enhance acetate methanogenesls. The direct consequence 

of the enhancements of these reactions was to decrease the total orgamic 



www.manaraa.com

188 

acids and increase the pH. The increase in pH could further result in a 

higher methane percentage due to a lower CO2 content in the gas phase. 

With gas recycle, CH4 production rate increased in all three SMARs 

(Figure 33). There was little difference in the CH4 production rate 

among the three SMARs. However, the relative increase of methane 

production rate in SMAR C was somewhat higher than in SMARs A and B, as a 

result of gas recycle. This might suggest two possibilities. First, 

before gas recycle (Run 10a), SMAR C might have been somewhat more 

inhibited by H2 gas than SMARs A and B due to the higher hydrostatic 

pressure in the bottom zone of SMAR C. And second, only the dissolved 

hydrogen can be utilized by methanogens and the dissolution rate of H2 

gas might be a weak function of pressure with the range tested in this 

study. 

Further examination of the individual volatile acids supports the 

hypothesis relating to Hz inhibition. As shown in Appendix F, the 

concentrations of the Hg-producing volatile acids, especially propionate, 

n-butyrate, and n-valerate, were all significantly reduced in both gas 

recycle runs (compared to Run 10a) at most ports of the three SMARs. For 

example, propionate concentration decreased from 98 mg/L to 14 mg/L at 

port #1 of SMAR A, from 233 mg/L to 97 mg/L at port #1 of SMAR B, and 

from 360 mg/L to 202 mg/L at port #4 of SMAR C. However, most of the 

acids at the bottom two ports of SMAR C (CI and C2) increased with gas 

recycle. This might be due to faulty sampling (clogged ports) that leads 

to the very low acids concentrations for the run without gas recycle. 
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Acetate concentrations also increased at some ports. An explanation is 

that, with gas recycle, acetate was produced at a higher rate from 

acetogenesis of the Hz-producing volatile acids, while, with no gas 

recycle, acetogenesis was inhibited due to a higher H2 partial pressure. 

Figures 48 through 50 compare Run 10a and 10aG2 for the distribution in 

acetate, propionate, and butyrate, respectively. 

With gas recycle, SCOD and TOA distribution decreased at most 

heights of the three SMARs (Figures 51 and 52), which correspondingly 

resulted in an increase in pH distribution (Figure 53). Although the gas 

recycle rates were small (about 3.5% in Run lOGl and 7.0% in Run 10aG2), 

TSS distribution (Figure 54) clearly showed that the bottom solids zones 

in the three SMARs expanded upwards. It appears that SMAR A was too 

short to retain the expanded solids. In SMARs B and C, solids expansion 

was limited to the bottom 30 cm. 

Gas recycle has been used as a common practice in digester operation 

to provide mixing for better contact between substrate and organisms. 

Mixing can also be achieved by using mechanical devices such as low-speed 

turbines at an equivalent mean velocity gradient (G). In this respect, 

mixing is simply used for a physical purpose (better contact). However, 

a recent USEPA report (1987) states that: 

A correlation of equivalent mixing efficiencies with the 
velocity gradient values for different (mixing) systems has not 
been demonstrated. 

Biogas mixing has been proven to be a more efficient mixing method than 

mechanical mixing in the operation of many full-scale sludge digesters 
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(Estruda, 1960). In the onset study of the high-rate sludge digesters, 

Morgan (1954) observed that the recycle of endproduct biogas can 

noticeably enhance the sludge digestion rate. He thus termed this as an 

"autocatalytic reaction". Operations of large-scale pure-culture 

methanogenic reactors have also shown that methanogenic growth rate on 

hydrogen (as the sole energy source) c^ be greatly accelerated (from 

0.02 to 0.18 1/hr) when agitation speeds (of six-bladed impeller) 

increase from 200 rpm to 1000 rpm (Daniels et  a l , ,  1984a). All the above 

information suggests a perception that mixing by gas recycle might have 

provided a need more than just for a physical reason of a better contact. 

A biological reason that allows the hydrogen gas in the recycle gas to be 

more efficiently utilized, consequently enhancing digestion performance, 

might be a more valid explanation. More studies need to be done to 

confirm this. 

Unsteady-State Response 

The general pattern of the unsteady-state responses of the three 

SMARs to changes in operating conditions is discussed below. Once a 

steady-state run was completed, loading conditions were changed for the 

next steady-state study by changing the influent COD concentration and/or 

flowrate. The general rule was to stepwise increase the volumetric 

loading rate (g/L/d), but sometimes the loading rate was decreased for a 

few days and then suddenly increased to observe the response. Appendix D 

shows the gas production rates for the entire study. 
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Response Loading Change 

In general, response of gas production to a change in COO loading 

rate was quick and a steady state was achieved within a few days. For 

example, on day 75, the loading rate was Increased to about 1.0 g/L/d by 

doubling the influent COD concentration to about 2.0 g/L. The daily gas 

production rate increased immediately and achieved a steady-state level 

on day 77. At hJTgher loading rates, such as Run 4bl on day 273 and Run 

8a on day 326, the same quick response was observed. 

It seems that operation at higher flowrates resulted in faster 

responses to change in loading, probaibly due to the shorter flow-through 

times required. Response to a sudden large increase in influent 

flowrates with the same COD loading rates, such as for Run 2c on day 258, 

was characterized by an initial increase followed by a gradual decrease 

in gas production. A possible explanation is that, upon the increase of 

flowrate, the higher influent COD concentration, previously loaded in the 

SMAR, was quickly displaced upwards and replaced by the lower influent 

COD concentration. The initial Increase and subsequent decrease in gas 

production was more gradual for SMAR C than for SMARs A and B, probably 

due to a more plug-flow hydraulic pattern in SMAR C. This might suggest 

that SMARs that need to treat wastes with a more.diurnal or seasonal 

flowrate change should be designed to enhance plug-flow hydraulics to 

dampen the changes. 
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Response ̂  Incidental Air Exposure 

On two occasions, air was accidentally pumped into thé SMAR system 

due to clogging in the tap water pressure reducer. The first incident 

occurred on day 52 (the 2nd day after reseeding) during the re-

acclimation period with gas recycle. The systan was air-recycled for 

about 4 hours at a rate of about 250, 120, and 60 mL/min for SMARs A, B, 

and C, respectively. Gas production decreased by about 20% on the next 

day, but there was no further decrease thereafter. 

The second incident occurred on day 280 right after steady-state Run 

4bl. Air was fed through the influent line with no gas recycle for a 

period of about 1 day. No apparent negative impact was observed. It is 

explained that, because of the substrate gradient nature of biofloc and 

biofilm growth in the SMAR system, oxygen which was incidentally fed 

might not fully reach the growth surface to cause inhibition. 

Response ̂  Temperature Change 

In a period of day 259-267 (Run 2C), influent temperature fluctuated 

between 22 and 39° C due to a malfunction in the tap water pressure 

reducer. Gas production reduced almost by half on day 261 with an 

influent temperature of 22° C. SMAR C was more stressed than SMARs A and 

B. An unusual odor was sensed for several days after a constant 

temperature of 35° C was restored. 
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Response to Restarting after Long-Term Recession 

Response of the three SMARs after a long period of recession was 

also studied. During the Mew Years period, COD loading was maintained at 

a very low rate of about 0.2 g/L/d with a retention time of about 2 days 

for 22 days. Steady-state gas production was observed in 2 days after 

the loading was resumed at about 2 g/L/d. 

In another incident during the latter phases of this study, the SMAR 

system was shut off for 12 days (days 368-380) due to a malfunction in 

the feed pump speed controller. The system was restored at a loading 

rate of about 8 g/L/d with a retention time of about 0.5 days. Steady-

state gas production was achieved in 2 days. SMAR C recovered at a 

slower rate than SMARs A and B. It is worth noting that, even though the 

system was operating under acidic conditions (pH 6.0-6.7 along the SMAR 

height), not considered as an optimum condition in the latter phases of 

this study, the system was able to recover quickly at such a high loading 

rate after the long-term recession. 

Response to  Starving 

At the end of the study, influent to the SMAR system was shut off 

and gas production was monitored for 21 days (day 418 to 438). The 

purpose of this was to see if there was any difference in decay rate 

among the three SMARs under starving conditions. The wet test meter for 

SMAR B was not available at that time, therefore only SMARs A and C were 

monitored. 
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Surprisingly, as shown in Figure 55, SMAR A decayed at a much faster 

rate than SMAR C. The initial decay rate of SMAR A was about 46 L gas 

produced/d with a constant rate of change of about 4 L/d/d. The initial 

decay rate decreased at the constant rate of change for about 10 days and 

stabilized at a rate of about 9 L/d after. SMAR C, however had a very 

different response to starving. The gas production rate of SMAR C 

dropped from about 14 L/d to about 5 L/d on the 2nd day after the start 

of starving. The gas production then gradually and slightly increased to 

about 6 L/d at the 5th day and remained at approximately the same rate 

after that. Gas analysis on day 21 after starving was not successful 

due to an inadequate gas volume that could be sampled. 

The results of the decay study suggest that the decay rate of 

anaerobic digestion is inversely proportional to the hydrostatic pressure 

under which the decay occurs. SMARs with higher hydrostatic pressures, 

as for SMAR C, tend to retain the decaying gas in the systems amd retard 

the decaying process. The same type of retardation (Figure 21) was also 

observed in most of the AMA tests as pressures built up in the incubation 

flasks. 

SMAR Sizing and Operation 

SMAR Sizing Procedures 

Based on the results of this study, procedures that could be used 

for SMAR design are presented below. As shown in Figure 31, TCOD removal 

rate based on the g/L liquid volume/d appears to be a good design 

parameter for determining SMAR liquid volume. 
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SRT is likely to be a better operating index rather than a good 

parameter for SKAR sizing. This is because the SRT in SMAR systems is 

usually too long (such as 300-500 days) to be a sensitive design 

parameter. Also, the concept of SRT fails to differentiate the bioroass 

activity which could vary by a factor of at least ten in a SMAR system 

(Appendix 0). Retention time (T^) could be used as the design parameter 

for SMAR sizing with a fairly simple calculation. However, as influent 

COD concentrations vary, the performance of SMARs is quite different even 

with the same Tj. 

The SMAR sizing procedure presented below is based on three 

criteria: (1) TCOD removal rate (g/L/d), (2) Theoretical retention time 

(hour), and (3) Influent substrate flux (g/cmVd). 

(1) Determine the distribution curve of the TCOD removal rates (g/L/d) 

for a range of COD loading rates and detention times as shown in 

Figure 31, by pilot-scale tests. 

(2) For a design flcwrate (Q) and influent COD concentration (So), 

calculate the total daily COD loading rate in g/d (QSQ). 

(3) Assume a design SMAR liquid volume (Vx) and calculate the volumetric 

COD loading rate in g/L/d (QSQ/VI). 

(4) Using the TCOD removal curve established in Step 1, determine the 

TCOD removal rate (R) at the calculated loading rate determined in 

step 3. 

(5) Decide on a design TCOD removal percentage (p). This could be 

estimated from the slope of the TCOD removal curve determined in 
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Step 1. Calculate the total COD required to be treated <pQSo). It 

should be noted that a removal percentage beyond the treatment 

capability determined by the TCOD removal curve in Step 1 should not 

be used. 

(6) Determine the SMAR operating liquid volume (V2) by pQSo/R. 

(7) If the volume determined in Step 6 is different from the assumed 

volume in Step 3, repeat Steps 3 through 6 using the volume 

determined in Step 6 until the volume is the same or within an 

acceptable range between two consecutive calculating cycles (V3). 

(8) Calculate the theoretical detention time (%= V3/Q) to see if it is 

within the range used in the pilot test for establishing the TCOD 

removal curve in Step 1. If the % is shorter than the shortest 

value used in the pilot test, a longer % should be used to 

determine the SMAR void volume (V4). 

The SMAR void volume (V3 or V4) determined above is based on the 

actual operating data with the pilot-scale SMARs under actual short-

circuiting conditions. Therefore, the short circuiting factor has been 

considered in the above sizing procedures and needs not be corrected for. 

However, a scale-up safety factor (f) can be estimated to determine the 

full-scale SMAR liquid volume (V5= fV] or fV*). And finally, the SMAR 

design volume (V) is calculated by dividing V5 by the packing porosity. 

It is worth noting that the type of packing that is to be used in full-

scale SMARs should be used, in the related pilot-scale studies with the 

exact same scale, shape, and dimensions (Young, 1985). 
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To determine SMAR height, the height used in the pilot-scale study 

could be directly used since this is the height used in establishing the 

TCOO removal curves in Step 1 above. This also implies that the height 

of the pilot-scale SMARs should be as close as possible to the height of 

full-scale SMARs to be designed. This might be somewhat difficult since 

the height is what needs to be designed. Dague (1982), observing that 

most removal occurs in the bottom zone, suggests a shallow type of SMAR 

with a height of about 10 ft (3.3 m). Recently, one full-scale SMAR was 

designed with a height of 10 ft in the treatment of vegetable processing 

waste (Roe and Love, 1984). However, the SMAR height should not be 

scaled up simply using the height/diameter ratio of the pilot-scale SMAR. 

Once the volume and height are determined, the cross-sectional area 

can be calculated. The area (A) should be checked for influent COD flux 

(QSo/A). As shown in this study, biomass accumulation in the bottom zone 

of SMAR C resulted in clogging and serious short-circuiting in the latter 

phases of this study with a COO loading rate of about 10 g/L/d (Run 10a). 

With the loading rate, influent COD flux was about 2.8 g/on^/d for SMAR 

C, as compared to about 0.5 for SMAR A and 1.2 for SMAR B. Based on 

this, a maximum influent COD flux of 2 g/cm^/d for the NFDM waste is 

suggested. 

Operation with Gas Recycle 

Based on the results of the gas recycle studies (Run lOaGl and 

10aG2), the SMAR process should be designed to quickly remove M2 gas once 
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it is produced. This is especially true if the SMAR is ~o be operated at 

high loading rates, such as above 6 g/L/d. One of the methods, as 

demonstrated in this study, is to recycle the exit gas. Gas can also be 

recycled within the bottom active zone, and this is probably a better 

method to avoid the disturbance in the upper zone, as it would be 

disturbed with the exit gas recycle. 

One of the questions that remains to be answered is what should be 

the optimal recycling ratio, if there is one. The writer favors a small 

recycling ratio, such as 5%. It is felt that the key point of gas 

recycle is to quickly dissolve the insoluble Hz gas once it is produced. 

It is also felt that the dissolution rate of H2 is not a strong function 

of pressure and mixing intensity, but a strong function of the H2 bubble 

size. Therefore a high recycle ratio should not significantly improve 

the dissolution rate. Also a high ratio might result in the expansion of 

the bottom solids zone, if gas recycle is not properly designed. If the 

H2 dissolution rate is a strong function of H2 bubble size, fine bubble 

sparging should be used. 

Gas recycle allows H2 gas in the system to be utilized by the 

H2-utilizing methanogens so that the H2 partial pressure in the system 

can be reduced. Consequently, methane production and TCOD removal rate 

can increase and solids become more stabilized. However, if gas recycle 

is to be used, the height should be carefully reviewed to ensure that 

effluent solids do not increase. 
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SUMMARY OF RESULTS AND CONCLUSIONS 

Tracer studies: 

(1) Tracer studies were done on both clean and dirty-bed SMARs, using 

lithium chloride with a slug input. This appears to be appropriate 

with a fair lithium recovery of 80-100 percent. Inadequate recovery 

due to absorption and/or adsorption by biomass in this study was not 

as great as in a previous study by Mueller and Mancini (1976), using 

a dye tracer. 

(2) The clean-bed tests were done with and without air gassing at a 

theoretical hydraulic retention time of about 0.5 day. With no 

gassing, the three SMARs had about the same degree of dispersion 

with a dispersion number (Nj) of 0.10-0.12. Based on the ratio of 

actual retention time to theoretical retention time (T/Tj), SMARs A 

and B had very little short-circuiting, while SMAR C (the tallest 

column) had slight short-circuiting (0.92), probably due to a higher 

superficial velocity. 

(3) Bottom single-point air gassing was used for the clean-bed tracer 

test at a mean velocity gradient of about 40 1/sec. Under this 

gassing condition, SMARs A and B had a very large dispersion (Nj = 

0.8-0.9) and SMAR C had a large dispersion (0.3). The shortest 

column (SMAR A) had the most short-circuiting (0.78) and the tallest 

column (SMAR C) had the least (0.95). This suggests that gassing 

has a significant effect on SMAR hydraulics, and, by increasing the 

SMAR height, short circuiting can be reduced. 
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(4) Two dirty-bed tests were conducted at COD loading rates of about 4 

g/L/d and 8 g/L/d and a hydraulic retention time of about 0.5 days. 

Compared to the clean bed with gassing, the dirty beds displayed 

more short-circuiting (0.6-0.8), even at lower mean velocity 

gradients (10-40 1/s). At the COD loading rate of 4 g/L/d, the 

tallest column (SMAR C) had the least short-circuiting (0.83) and 

dispersion (0.17). However, at the COD loading rate of 8 g/L/d, 

SMARs A and C were more short-circuiting (0.60) than SMAR B (0.71). 

SMAR A was probably too short to retain its contents under the 

effect of biogas mixing. For SMAR C, the higher short-circuiting 

probably resulted from the accumulation of highly concentrated 

biomass in the bottom. This suggests that, under normal operating 

conditions, biogas mixing and accumulation of biomass has a 

significant effect on SMAR hydraulics to cause short-circuiting, and 

it appears that there is an optimal height/diameter ratio (such as 

for SMAR B) in reducing the short-circuiting. 

(5) Clean-bed tracer tests cannot be used to estimate SMAR hydraulics 

under normal operating conditions. The actual SMAR hydraulics under 

normal operating conditions is a plug flow with a strong dispersion 

with the dispersion number (Ng) ranging from 0.2 to 1.0 and a 

dispersion coefficient (D<j) ranging from 1 to 90 cm^/min. 

(6) The dispersion numbers obtained in this study cannot be correlated 

with the mean velocity gradient induced by biogas mixing. The SMAR 

configuration must be considered. 
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Activity test: 

(1) The test criteria listed in Table 13 and the procedure shown in 

Appendix C for the acetoclastic methanogenic activity (AMA) test 

developed in this study appears to be appropriate, as evidenced by a 

strong linear specific gas production rate (L/g VSS/hour) and a fair 

success rate. 

(2) In general, the anaerobic procedures of N2 gas purging and sulfide 

addition are adequate to provide the anaerobic requirement. 

Stabilization for one hour after seeding is adequate for the 

depletion of air exposed in sample transfer. Gentle hand mixing 

appears to be appropriate for data reproducibility. 

(3) The manometer calibration procedure by incrementally withdrawing gas 

from incubation flasks appears to be appropriate, as evidenced by 

the almost perfect least squares linear correlation of the 

calibration curves. 

(4) A reproducibility study with four repetitions gives the activity 

test a variation coefficient of 6.5% at a mean AMA of 0.39 L CH4 

(STP)/gm VSS/d. 

SMAR performance: 

Three different shapes of cylindrical SMARs with the same packing 

volume of about 85 liters were operated at 35 °C for 415 days with a COD 

loading rate ranging from 1 to 12 g/L/d at three hydraulic retention 

times of about 0.5, 1, and 2 days. The feed substrate was made of low-

heat non-fat dry milk with mineral supplement. The effect of biogas 
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mixing was also evaluated by recycling exit gas after the H2S scrubbers 

and directly injecting the gas into the bottom feed lines. 

Throughout the entire study, pseudo steady-state performance of the 

three SMARs was evaluated in seventeen runs, as shown in Figure 22. 

Analyses on samples from various heights and effluent included total and 

soluble chemical oxygen demand (TCOD and SCOD), pH, alkalinity, total 

volatile acids (TVA), individual organic acids (C2-C5), and the activity 

test (AMA). Daily gas production and the methane content of the exit gas 

were also determined. The following observations can be made: 

(1) TCOD removal rate, instead of SCOD removal rate, should be used in 

the treatment performance evaluation of the SMAR process so that its 

solids retention capability can be also considered. 

(2) Based on TCOD removal rates (Figure 31), the tallest column (SMAR C) 

performed slightly better with COD loading rate above 4 g/L/d (with 

and without gas recycle). With COD loading rate equal to or balow 4 

g/L/d, there was little difference in TCOD removal rate among these 

three SMARs. With no gas recycle, SMARs A (the shortest column) and 

B showed little difference in TCOD removal rate. With gas recycle, 

SMAR B performed better than SMAR A in TCOD removal rate. 

(3) With no gas recycle, there was little difference in SCOD removal 

rate among the three SMARs (Figure 32). Comparisons between TCOD 

removal rate and SCOD removal rate suggests that the better 

performance of SMAR C was related to its better solids retention 

capability, resulting in less effluent solids. Evaluation based on 
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dally average methane production rate (Figure 33} and TSS effluent 

rate (Figure 34) agrees with the findings based on TCOD and SCOD 

removal rates. 

(4) In general, SMAR A had a fairly uniform distribution in pH, SCOD, 

TOA, TSS, and AMA with height (Appendix E), while SMAR C had the 

widest variation. This suggests that there was a fundamental 

difference in the operation of the three SMARs. In SMAR A, the acid 

and methane formers were more uniformly mixed together by the self-

induced blogas. In SMAR C, these two groups appear distinctively 

stratified, especially at high loading rates. 

(5) Acetoclastlc methanogenlc activity (AMA) ranged from 0.05 to 0.72 L 

CH4 (STP)/gm VSS/d in this study. For VSS less than 1 g/L, a higher 

AMA is associated with lower VSS concentrations (Figure 45). For 

VSS greater than 1 g/L, AMA varies within a narrow range of 0.1 to 

0.2 L CH4 (STP)/gm VSS/d. 

(6) Unsteady-state operating data indicate that, the SMAR system is 

capable of a quick response to organic shock loadings and hydraulic 

shock loadings. The system can tolerate a certain degree of air 

exposure and low temperature. The system can also recover from a 

long-term recession at a full loading rate within 2 to 3 days. 

Effects of gas recycle: 

(1) Gas recycle studies were done on two occasions with recycle ratios 

of akbout 3.5% and 7.0% and a COD loading rate of about 10 g/L/d at a 

hydraulic retention time of about 2 days. Compared to the run with 
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the similar operating conditions without gas recycle, gas recycle 

result in a 5-13% increase in CH4 content. Comparisons in 

distributions of SCOD, individual volatile acids (C2-C5), and pH 

show interrelated effects of the improved performance with gas 

recycle. However, there is little difference in the improved 

performance among these three SMARs with gas recycle. 

(2) With gas recycle, data in TSS distribution show that the bottom 

solids zones in the three SMARs expanded upwards. It appears that 

SMAR A is too short to retain the expanded solids. In SMARs B and 

C, solids expansion was limited in the bottom 30 cm. 

SMAR design procedure: 

(1) Based on the results of this study, a rational SMAR design procedure 

is proposed. The procedure is based on three criteria: TCOD 

removal rate (g/L/d), theoretical detention time (hours), and 

influent substrate flux (g/cmVd). The last criterion is set to 

prevent systems from the bottom accumulation of highly concentrated 

solids that could result in serious short-circuiting and clogging 

problems. 

(2) When conducting SMAR pilot studies, the height of the pilot-scale 

SMARs should be as close as possible to the height of the full-scale 

SMARs to be designed. Considering that most removal occurs in the 

bottom zone, a shallow type of SMAR, say about 10 ft (3.3 m) can be 

used, as opposed to a 20-30 ft SMAR height used by Taylor (1972) and 

Witt et al. (1979). 
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(3) Based on the results of the gas recycle studies, the SMAR process 

can be designed for gas recycle to improve performance, especially 

at high loading rates. It is suggested that the key point of gas 

recycle is to quickly dissolve the insoluble Hz gas once it is 

produced. It is also suggested that a small recycle ratio, such as 

5%, be used to minimize bottom solids expansion. If the Hz 

dissolution rate is a strong function of Hz bubble size, fine bubble 

sparging should be used. If gas recycle is used, the height should 

be carefully reviewed to ensure that effluent solids do not 

increase. 
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RECOMMENDATIONS FOR FURTHER RESEARCH 

Hydrostatic Pressure: 

A type of retardation in gas production was observed in two separate 

tests during this study. The first was in conducting the AMA tests for 

samples obtained from various heights of the SMARs. In most runs, 

retardation was observed when the pressure built up after 5-6 hours of 

incubation. The retardation could not be due to substrate limitation, 

since an adequate F/M ratio was insured throughout the entire period of 

incubation. The incubation under high pressures could not be further 

studied because of the use of the manometer, which could only hold a 

maximum pressure of about 20-25 cm acetylene tetrabromide (CzHzBr*, s.g. 

2.96 g/cm3). 

The second test was in conducting the SMAR decay test under starving 

conditions at the end of this study. SMAR C, which has a higher 

hydrostatic pressure, decayed at a much slower initial rate than did SMAR 

A (Figure 45). It is suggested that the type of retardation under high 

pressure be further studied during acclimation and normal operating 

conditions. The importance of the study can be related to the scale-up 

problem. Many full-scale anaerobic reactors are operated at a much 

higher hydrostatic pressure (20-30 ft H2O) than the pilot-scale reactors 

(0.5-5 ft H2O) used to establish design loadings. 

The retardation test can be done by using a pressure transducer with 

a signal readout device in the AMA test. Another method is to operate 

CSTRs with a pressurized water lock. The first method is easier while 
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the second method can provide Information with continuous feeding under 

acclimation or normal operating conditions. 

Fine bubble sparging: 

The results of the gas recycle study suggest a hypothesis that, at 

high loading rates, anaerobic digestion can be rate-limited by the 

dissolution rate of hydrogen gas produced in the system. Indeed, 

hydrogen gas is very insoluble in water (about 1.6 g/L at 25° C). When 

hydrogen is produced by hydrogen-producing acetogens, it is in the 

dissolved form. The dissolved hydrogen that is not utilized in time 

tends to volatilize into the gas phase. The hydrogen gas, which cannot 

be utilized by methanogens (or even sulfate-reducers), builds up and 

eventually reaches a level that inhibits the hydrogen-producing 

acetogenesis, especially of low-carbon volatile acids, such as propionate 

and butyrate. 

One cam also speculate that the dissolution rate of hydrogen gas is 

a strong function of hydrogen bubble size. It is suggested that further 

studies be done to verify this hypothesis. This can be done by operating 

several CSTRs with hydrogen gas sparging through diffusers with different 

pore sizes. This would allow for establishing the relationship between 

hydrogen utilization rate and hydrogen dissolution rate with different 

bubble sizes. Also, biofilm or biofloc reactors such as anaerobic 

filters can be operated at high loading rates using complex wastes and 

sparged with recycled gas using fine-bubble diffusers. This would allow 



www.manaraa.com

216 

for study of the optimal gas recycling rate (if there is one) and 

demonstrate a practical use of the hypothesis. 
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Kouadlô  S. K. Evaluation of the Methods of Linear Least Squares Based 
OR Linearized Models of the Completely Mixed Plow Activated Sludge 
Process for Estimating the Monod Kinetic Parameters and Alternative 
Methods for Estimating the Monod Kinetic Parameters. M.S. Thesis. 
University of Iowa, Iowa City, Iowa (August, 1984). 

Lau, A. 0., Strom, P. P., and Jenkins, D. "The competitive growth of 
floc-formlng and filamentous bacteria: a model for activated sludge 
bulking." Journal of Water Pollution Control Federation, 56, 1, 52-61 
(January, 1984). 

Lawler, D. P., Chung, Y. J., Hwang, S. J., and Hull, B. A. "Anaerobic 
digestion: effects on particle size and dewaterabllity." Journal of 
Water Pollution Control Federation. 58, 12, 1107-1123 (December, 
1986). 

Lawrence, A. W. and McCarty, P. L. "Kinetics of methane fermentation in 
anaerobic treatment." Journal ̂  Water Pollution Control Federation, 
41, 2, part 2, R1-R17 (February, 1969). 

Lee, K. M. and Stensel, H. 0. "Aeration and substrate utilization in a 
sparged packed-bed biofllm reactor." Journal of Water Pollution 
Control Federation, 58, 11, 1066-1072 (November, 1986). 

Lettlnga, G., Van Velsen, A. P. M., Hobma, S. W., De Zeeuw, W., and 
Klapwijk, A. "Use of the upflow sludge blanket (USB) reactor concept 
for biological wastewater treatment, especially for anaerobic 
treatment." Biotechnology and Bioenglneerlng, 22, 699-734 (1980). 

Levenspiel, 0. and Smith, W. K. "Notes on the diffusion-type model for 
the longitudinal mixing of fluids in flow." Chemical Engineering 
Science. 6, 227-233 (1957). 

Levine, A. D., Tchobanoglous, G., and Asano, T. "Characterization of the 
size distribution of contaminants in wastewater: treatment and reuse 
implications." Journal of Water Pollution Control Federation, 57, 7, 
805-816 (July, 1985). 

Mah, R. A. "Isolation and characterization of Methanococcus mazei," 
Current Microbiology, 3, 321-326 (1980). 



www.manaraa.com

224 

Mah, R. A. and Kuhn, D. A. "Transfer of the type species of the genus 
Methanococcus to the genus Hethanosarcina, naming it Hethanosarcina 
mazi (Barker 1936) comb. nov. et. emend, and conservation of the genus 
Methanococcus (approved lists 1980) with Methanococcus vannielii 
(approved lists 1980) as the type species." International Journal of 
Systematic Bacteriology. 34, 1174-1184 (1984). 

Mahoney, E. M., Varangu, L. K., Cairns, W. L., and Kosaric, N. "Cell 
surface and aggregation studies of microbes from anaerobic systems." 
Presented at the 57th Annual Conference of the Water Pollution Control 
Federation, New Orleans, Louisiana (1984). 

McCarty, P. L. "Anaerobic waste treatment fundamentals: part one— 
chemistry and microbiology." Public Works, 95, 107-112 (September, 
1964a). 

McCarty, P. L. "Anaerobic waste treatment fundamentals: part two— 
environmental requirements and control." Public Works, 95, 123-126 
(October, 1964b). 

McCarty, P. L. "Anaerobic treatment of soluble wastes." Advances in 
Water duality Improvement. Volume I. E. F. Gloyna and W. W. 
Eckenfelder, Jr. (Eds.). University of Texas, Austin, Texas (1966). 

McCarty, P. L. "Energetics and bacterial growth." Presented at the 5th 
Rundolf Research Conference, Rutgers-the State University, New 
Brunswick, New Jersey (1969). 

McCarty, P. L. "Historical trends in the anaerobic treatment of dilute 
wastewaters." Anaerobic Treatment of Sewage. M. S. Swizenbaum 
(Ed.). University of Massachusetts, Amherst, Massachusetts (June, 
1985). 

McCarty, P. L. and Smith, D. P. "Anaerobic wastewater treatment." 
Environmental Science and Technology, 20, 1200-1206 (November, 1986). 

Mclnerney, M. J. and Bryant, M. P. "Anaerobic degradation of lactate by 
syntrophic associations of Methanosarcina barkeri and Desulfovibrio 
species and effect of H2 on acetate degradation." Applied and 
Environmental Microbiology, 41, 2, 346-354 (1981). 

Mclnerney, M. J., Bryant, M. P., amd Pfennig, N. "Anaerobic bacterium 
that degrades fatty acids in syntrophic association with 
methanogens." Archives of Microbiology, 122, 129-131 (1979). 

Mclnerney, M. J., Bryant, M. P., Hespell, R. B., and Costerton, J. W. 
"Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic syntrophic, 
fatty acid-oxidizing bacterium." Applied and Environmental 
Microbiology, 41, 4, 1029-1039 (April, 1981). 



www.manaraa.com

225 

Metcalf and Eddy, Inc. Wastewater Engineering: Treatment, Disposal, 
Reuse. 2nd Edition. McGraw-Hill, New York (1972). 

Meunier, A. D. and Williamson, K. J. "Packed bed biofilm reactors: 
simplified model.'* Journal of the Environmental Engineering Division, 
Proceedings of the American Society of Civil Engineering, 107, EE2, 
307-317 (April, 1981). 

Miller, T. L. and Wolin, M. J. "Oxidation of hydrogen and reduction of 
methanol to methane is the sole energy source for a methanogen 
isolated from human feces." Journal of Bacteriology, 153, 1051-1055 
(1983a). 

Miller, T. L. and Wolin, M. J. "Stability of Hethanobrevibacter smithii 
populations in the microbial flora excreted from the human large 
bowel." Applied and Environmental Microbiology, 45, 317-318 (1983b). 

Monod, J. "The growth of bacterial cultures." Annual Review of 
Microbiology, 3, 371-394 (1949). 

Morgan, P. P. "Studies of accelerated digestion of sewage sludge." 
Sewage and Industrial Wastes, 26, 4, 462-478 (April, 1954). 

Mosey, P. E. "Anaerobic filtration: a biological treatment process for 
warm industrial effluents." Water Pollution Control, 77, 370-378 
(1978). 

Mueller, J. A. and Mancini, J. L. "Anaerobic filter—kinetics and 
application." Proceedings of the 30th Industrial Waste Conference, 
Purdue University, West Lafayette, Indiana (1976). 

Novak, J. T. and Carlson, D. A. "The kinetics of anaerobic long chain 
fatty acid degradation." Journal of Water Pollution Control 
Federation, 42, 11, 1932-1943 (November, 1970). 

Oleszkiewicz, J. A. and Koziarski, S. "Low temperature anaerobic 
bioflltratlon in upflow reactors." Journal of Water Pollution Control 
Federation, 54, 11, 1465-1471 (November, 1982). 

O'Rourke, J. T. Kinetics of Anaerobic Waste Treatment at Reduced 
Temperatures. Ph.D. Dissertation. Stanford University (March, 1968). 

Parkin, G. P., Speece, R. E., Yang, C. H. J., and Kocher, W. M. "Response 
of methane fermentation systems- to industrial toxicants." Journal of 
Water Pollution Control Federation, 55, 1, 44-53 (January, 1983). 

Pfeffer, J. T. auid Llebman "Energy from refuse by bioconversion, 
fermentation, and residual disposal processes." Resource Recovery 
Conversion, 1, 295-313 (1976). 



www.manaraa.com

226 

Plummer, A. H., Jr., Mallna, J. F., Jr., and Eckenfelder, W. W., Jr. 
"Stabilization of a low solids carbohydrate waste by an anaerobic 
submerged filter." Proceedings of the 23rd Industrial Waste 
Conference, Purdue University, West Lafayette, Indiana (1969). 

Podolak, P. L., Friedman, A. A., and LaGrega, M. D. "Effect of reduced 
partial pressure on anaerobic rotating biological contactor." 
Proceedings of the 2nd International Conference on Fixed Film 
Biological Processes, University of Pittsburgh, Pittsburgh, 
Pennsylvania (July, 1984). 

Polprasert, C. and Hoang L. H. "Kinetics of bacteria and bacteriophages 
in anaerobic filters." Journal of Water Pollution Control Federation, 
55, 4, 385-391 (April, 1983). 

Powell, G. E., Hilton, M. G., Archer, D. B., and Kirsop, B. H. "Kinetics 
of the methanogenic fermentation of acetate." Journal of Chemical 
Technology and Biotechnology, 33B, 209-215 (1983). 

Ripley, L. E., Boyle, W. C., and Converse, J. C. "Improved Alkalimetric 
monitoring for anaerobic digestion of high-strength wastes." Journal 
of Water Pollution Control Federation, 58, 5, 406-411 (May, 1986). 

Rittmann, B. E. "The effect of shear stress on biofilm loss rate." 
Biotechnology and Bioengineering, 24, 501-506 (1982). 

Rittmann, B. E., Strubler, C. E., and Ruzicka, T. "Anaerobic-filter 
pretreatment kinetics." Journal of the Environmental Division, 
Proceedings of the American Society of Civil Engineers, 108, EES, 
900-912 (October, 1982). 

Rivard, C. J. and Smith P. H. "Isolation and characterization of a 
thermophilic marine methanogenic bacterium, Methanogenium 
themophilicum sp. nov." International Journal of Systematic 
Bacteriology, 32, 430-436 (1982). 

Rivard, C. J., Henson, J. M., Thomas, M. V., and Smith, P. H. "Isolation 
and characterization of Hethanomicrobium paynteri sp. nov., a 
mesophilic methanogen isolated from marine sediments." Applied and 
Environmental Microbiology, 46, 484-490 (1983). 

Robinson, R. W., Akin, D. E., Nordstedt, R. A., Thomas, M. v., and 
Aldrich, H. L. "Light and electron microscopic examination of 
methame-producing biofilms from anaerobic fixed-bed reactors." 
Applied and Environmental Microbiology, 48, 1, 127-136 (July, 1984). 

Roe, S. F., Jr. and Love, L. S. "Anaerobic digestion of vegetable 
processing waste." Presented at the 2nd International Conference on 
Fixed Film Biological Processes, Arlington, Virginia (May, 1984). 



www.manaraa.com

227 

Sachs, E. F., Jennett, J. C., and Rand, M. C. "Pharmaceutical waste 
treatment by anaerobic filter." Journal of Uie Environmental 
Engineering Division, Proceedings of the American Society of Civil 
Engineers, 108, EE2, 297-314 (1982). 

Sahm, H. Anaerobic Wastewater Treatment—Advances jji Biological 
Engineering/Biotechnology. Springer-Verlag, Inc., New York, (1984). 

Scheifinger, C. C. and Wolin, M. J. "Propionate formation from cellulose 
and soluble sugars by combined cultures of Bacteroides succinogenes 
and Selenomonas ruminatium," Applied Microbiology, 26, 5, 789-795 
(1973). 

Schink, B. and Pfenning, K. "Propionigenium modestum, gen. nov. sp., a 
new strictly anaerobic, nonsporing bacterium growing on succinate." 
Archives of Microbiology, 133, 209-216 (1982). 

Shames, I. H. Mechanics of Fluids. 2nd Edition. McGraw-Hill Book 
Company, New York (1982). 

Shea, T. G., Pretorius, W. A., Cole, R. D., and Pearson, E. A. "Kinetics 
of hydrogen assimilation in the methane fermentation." Water 
Research, 2, 833-848 (1968). 

Sohngen, N. L. Waterstof En Metan. Ph.D. Dissertation. University of 
Technology, Delft, The Netherlands (1906). 

Song, K.-H. and Young, J. C. "Media design factors for fixed-bed 
filters." Journal of Water Pollution Control Federation, 58, 2, 
115-121 (February, 1986). 

Sorensen, J., Christensen, D., and Jorgenesn, B. B. "Volatile fatty 
acids and hydrogen as substrates for sulfate-reducing bacteria in 
anaerobic marine sediment." Applied and Environmental Microbiology, 
42, 1, 5-11 (July, 1981). 

Sowers, K. R. and Ferry, J. G. "Isolation and characterization of a 
methylotrophic marine methanogen, Hethanococcoides methyluteas gen. 
nov., sp. nov." Applied and Environmental Microbiology, 45, 684-690 
(1983). 

Sowers, K. R., Baron, S. F., and Ferry, J. G. " Methanosarcina 
acetivorans sp. nov., an acetotrophic methane-producing bacterium 
isolated from marine sediments." Applied and Environmental 
Microbiology, 47, 971-978 (1984). 

Speece, R. E. "Anaerobic biotechnology for industrial wastewater 
treatment." Environmental Science and Technology, 17, 9, 416A-427A 
(1983). 



www.manaraa.com

228 

Speece, R. E. and McCarty, P. L. "Nutrient requirements and biological 
solids accumulation in anaerobic digestion." Advances in Water 
Pollution Research. Volume 2. W. W. Eckenfelder (Ed.). University 
of Texas, Austin, Texas (September, 1962). 

Standard Methods for the Examination of Water and Wastewater. 16th 
Edition. American Public Health Association, Washington, D. C. 
(1985). 

Stetter, K. 0. and Gagg, 6. "Reduction of molecular sulphur by 
methanogenic bacteria." Nature, 305, 309-311 (1983). 

Stetter, K. 0., Thomm, M., Winter, J., Wildgruber, 6., Huber, H., Zillig, 
W., Janecovic, D., Konig, H., Palm, P., and Wunderl, S. 
"Methanothermus fervidus, sp. nov., a novel extremely thermophilic 
methanogen isolated from an Icelandic hot spring." Zentralblatt fuer 
Bakterioloqie Mikrobiologie und Hygiene, I, Abstract, Origin c2, 
166-178 (1981). 

Suidam, M. T. "Performance of deep biofilm reactors." Journal of the 
Environmental Engineering Division, 112, 1, 78-93 (February, 1986). 

Taylor, 0. W. "Full-scale anaerobic trickling filter evaluation." 
Proceedings of National Symposium on the 3rd Food processing Wastes, 
New Orleans, Louisiana. EPA-R2-72-018 (November, 1972). 

Thauer, K. R., Jungermann, K. and Decker, K. "Energy conservation in 
chemotrophic anaerobic bacteria." Bacteriological Reviews, 41, 1, 
100-180 (March, 1977). 

Torpey, W. N. "Loading to failure of a pilot high-rate digester." 
Sewage Works, 27, 2, 121-148 (February, 1955). 

Trulear, M. G. and Characklis, W. G. "Dynamics of biofilm processes." 
Journal of Water Pollution Control Federation, 54, 9, 1288-1300 
(September, 1982). 

U. S. Environmental Protection Agency. Operations Manual Anaerobic 
Sludge Digestion. EPA-430/9-76-001 (February, 1976). 

U. S. Environmental Protection Agency. Methods of Chemical Analysis of 
Water and Wastes. EPA-625/6-74-003a (1978). 

U. S. Environmental Protection Agency. Handbook for analytical quality 
control ̂  water and wastewater laboratories. EPA-600/4-79-019 
(March, 1979). 

U. S. Environmental Protection Agency. Process Design Manual for Sludge 
Treatment and Disposal. EPA-625/1-79-011 (September, 1979). 



www.manaraa.com

229 

U. S. Environmental Protection Agency. "Design Information report— 
Anaerobic digester mixing systems." Journal of Water Pollution 
Control Federation, 59, 3, 162-170 (March, 1987). 

Van Den Berg, L. and Lentz, C. P. "Comparison between up- and down-flow 
anaerobic fixed film reactors of varying surface-to-volume ratios for 
the treatment of bean blanching waste." Proceedings of the 34th 
Industrial Waste Conference, Purdue University, West Lafayette, 
Indiana (1979). 

Van Der Meer, R. R. and De Vletter, R. "Anaerobic treatment of 
wastewater: the gas-liquid-sludge separator." Journal of Water 
Pollution Control Federation, 54,11, 1482-1492 (November, 1982). 

Valcke, D. and Verstraete, W. "A Practical Method to Estimate the 
Acetoclastic Methanogenesis Biomass in Anaerobic Sludges." Journal of 
Water Pollution Control Federation, 55, 9, 1191-1196 (September, 
1983). 

Wang, Y.-T., Suidan, M. T., and Rittnan, B. E. "Kinetics of methanogens 
in an expanded-bed reactor." Journal of Environmental Engineering, 
112, 1, 155-171 (February, 1986). 

Weber, W. J., Jr. Physicochemical Processes for Water Quality Control. 
John Wiley & Sons, New York (1972). 

Weimer, P. J. and Zeikus, J. G. "Fermentation of cellulose and 
cellobiose by Clostridium thermocellum in the adssence and presence of 
Methanobacterium thermoautotrophicumApplied amd Environmental 
Microbiology. 33, 289-297 (1977). 

Wildgruber, G., Thomm, M., Konig, H., Ober, K., Ricchiuto, T., and 
Stetter, K. 0. "Methanoplanus limicola, a plate-shaped methanogen, 
representing a novel family, the MethanoplanaceaeArchives of 
Microbiology, 132, 31-36 (1982). 

Williamson, K. and McCarty, P. L. "A model of substrate utilization by 
bacterial films." Journal of Water Pollution Control Federation. 48, 
1, 9-24 (January, 1976a). 

Williamson, K. and McCarty, P. L. "Verification studies of the biofilm 
model for bacterial substrate utilization." Journal of Water 
Pollution Control Federation, 48, 2, 281-296 (February, 1976b). 

Winter, J., Lerp, C., Zabel, H. P., Wildenauer, F. X., Konig, H., and 
Schindler, P. Methanobacterium wolfei, sp. nov., a new tungsten-
requiring, thermophilic, autotrophic methanogen." Systematic Applied 
Microbiology. 5, 457-466 (1984). 



www.manaraa.com

230 

Witt, E. R., Humphrey, W. J., and Roberts, T. E. "Full-scale anaerobic 
filter treats high strength wastes." Proceedings of the 34th 
Industrial Waste Conference, Purdue University, West Lafayette, 
Indiana (1979). 

Wood, W. A. "Fermentation of carbohydrates and related compounds." The 
Bacteria—Metabolism. Volume II. I. C. Gunsalus and R. Y. Stainer 
(Eds.). Academic Press, New York (1961). 

Young, J. C. T̂  Anaerobic Filter for Waste Treatment. Ph.D. 
Dissertation. Stanford University, Stanford, California (1968). 

Young, J. C. "Anaerobic filters for pretreatment of industrial wastes." 
Presented at the 7th International Symposium on Alternative Energy 
Sources, Miami Beach, Florida (December, 1985). 

Young, J. C. and Oahab, M. F. "Effect of media design on the performance 
of fixed-bed anaerobic filters." Presented at the International 
Association of Water Pollution Research Seminar on Anaerobic Treatment 
of Wastewater in Fixed-Film Reactors, Technical University of Denmark, 
Copenhagen, Denmark (June, 1982). 

Young, J. C. and McCarty, P. L. "The anaerobic filter for waste 
treatment." Journal of Water Pollution Control Federation, 41, 5, 
part 2, R160-R173 (May, 1969). 

Zeikus, J. G. "Microbial population in digesters." Presented at the 4rd 
International Symposium on Anaerobic Digestion, Kwangchow, Kwangtung, 
China (1985). 

Zeikus, J. G., Lynd, L. H., Thompson, T. E., Krzyckl, J. A., Welmer, D. 
J., and Hegge, P. W. "Isolation and characterization of a new, 
methylotrophlc, acidogenic anaerobe, the Marburg strain." Current 
Microbiology, 3, 381-386 (1980). 

Zhillna, T. N. "A new obligate halophillc methane-producing bacterium." 
Mikrobiologlia, 52, 3, 375-382 (1983). 

Zimpro, Inc. Determination of Chemical Oxygen Demand. ZP-166, Zimpro, 
Inc., Rothschild, Wisconsin (1980). 

Zinder, S. H. amd Math, R. A. "Isolation euid characterization of a 
thermophilic strain of Hethanosatcina unable to use H2-CO2 for 
methanogenesls." Applied and Environmental Microbiology, 38, 996-1008 
(1979). 



www.manaraa.com

231 

ACKNOWLEDGEMENTS 

The slncerest appreciation Is extended to the author's major 

professor, Dr. Richard R. Dague, for his continued guidance, 

encouragement, and patience, throughout the author's graduate work. The 

financial support from the Iowa State Engineering Research Institute is 

gratified. 

The author's graduate committee, Dr. E. Robert Baumann, Dr. John L. 

Cleasby, Dr. Peter J. Reilly, Dr. Lacy Daniels, amd Dr. Gene Parkin, who 

provide many invaluable helps and comments to this study, are 

appreciated. 

Appreciation is also extended to many of the author's colleagues and 

friends for their companionship and assistance: Eric Seagren, Ann 

Spiesman, Johannes Haarhoff, Suingill Choi, David You, James Lin, 

Ravindra Srivastava, Peter Gunther, Adrian Hanson, David Sabatini, Delvin 

DeBoer, and Charles Lee. 



www.manaraa.com

232 

APPENDIX A. TAXONOMY OF METHANOGENS BASED ON BALCH'S SCHEME (1979) 

RECENT ISOLATES ARE LISTED WITH APPROPRIATE REFERENCES 
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Energy G&C itm pH Teap NaCl 
Hû. Organism Strain History Source (%) (l/d) (%) (%) Reference 

Order I. Mettianotoacterzales 

Family I-I. Methanobacteriacea 

Gauis I-I-I. Methanobacterium 

1. 

2. 

Mb. 
formicicum 

Mb. 
bryantii 

2a# Mb. 
bryantii 

3. Mb. thermo-
autotrophicum 

MF 

M.O.H. 

M.O.H.G. 

AH 

M.P. Bryant, H2,f 40.7 
digester 

Former Mb. sp. H2 32.7 

isolated from 
M. omelianskii 
(Barker, 1963) 

former #6. sp. H2 33.2 

Sewage sludge H2 49.7 
digester 

8.0 65.0 

H2 = hydrogen f = formate m = methanol a = acetate ma = methylamides 
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Ho. Organisa Strain History 
Energy 
Source 

G&C 
(%) (%) PH HaCl 

(%) Reference 

3a. Mb. thermo- JW510 
autotroph!cum 

H2 

3b. Mb. thermo- Marburg 
autotroph!cum 

H2 10.4 

3c. Mb. thermo- W 
autotroph!cum 

from AH H2 46.0 

3d. Mb. Thermo- S 
autototrophium 

H2 46.0 

3e. Mb. Thermo- GCl 
autotroph!cum 

H2 

4. Mb. W 
wolfei 

Mixture of 
sewage sludge 
and river sed. 

H2 61.0 4.8 7.2 60.0 1.0 Winter et al. 
(1984) 

Mb. sp. Kuznetsov Ground water H2,f 48.8 1.0 7.2 37.0 14.0 Belyaev et al. 
(1983) 

Mb. sp. Omeliansky Oil field H2 37.3 0.9 6.9 45.0 14.0 Belyaev et al. 
(1983) 

Mb. sp. Ivanov Oil field 
USSR 

H2 36.6 1.0 7.2 45.0 No Belyaev et al. 
(1983) 
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Energy GfiC nm pH Teap MaCl 
Mb. Organisa Strain History Source (%) (l/d) (%) (%) Reference 

Gaïus I-I-II. MethanxArevihactor 

5. Mbr. Ml 
ruminantium 

6. Mbr. DHl 
arbophilius 

6a. Hbr. DC 
arbophilius 

6b. Mbr. AZ 
arbophilius 

7. Mbr. P5 
smithii 

bovine rumen 
Former Mb, 
sp. of Smith & 
Hungate (1958) 

H2,f 

Wet wood H2 
Former Mb. 
sp. of Zeikus & 
Hennig (1975) 

Former Mb. sp. H2 
Former Mb. 
sp. of Castignetti 
& Klain (1977) 

Sewage sludge H2 
digester 
Former Mb. 
sp. of ZWiender 
& Wuhrmann (1977) 

30.6 

27.5 

27.7 

31.6 

H2,f 31.0 Sewage sludge 
digester 
Former Mb. 
sp. of 
Smith (1961) 

Family I II. Methanothemaceae (Stetter et al., 1981) 

Gaïus I-II-I. Mettaanotbenus (Stetter et al., 1981) 

V245 Volcano H2 33.0 5.9 6.5 83.0 Mt. 
fervidus 

Volcano 
spring sed. 

Stetter et al. 
(1981) 
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Energy G6C am pB Temp MaCl 
No. Organisa Strain History Source (%) (l/d) <%) (%) Re£er«ce 

Order II. Metbanococcales 

Family II I. Metbanococcaceae 

Gams II-I-I. Methanococcus 

SB 9. He. 
vaanielii 

10. Mc. 
voltae 

PS 

11. Mc. thermo- SNl 
litlKttrophicus 

12. Mc. 
delta 

13. Mc. 
maripaludis 

14. Mc. 
janaaschii 

15. Mc. 
halophilus 

Mc. 
species 

RC 

JJ 

JAL-1 

San Fransisco H2,£ 
Bay sed. 

31.1 2.1 8.0 40.0 2.4 

Estuary sed. H2,f 30.7 5.5 7.0 38.0 4.0 

Former Mc. 
sp. of Word 
(1970) 

Volcano H2,f 

Missi. river H2,f 

31.3 18.5 7.0 65.0 4.0 Huber et al. 
(1982) 

40.5 8.3 37.0 4.0 Corder et al. 
(1983) 

Salt marsh 
sed. 

H2,f 

East Pacific H2 
ocean hydro
thermal vent 

33.0 8.3 7.0 38.0 0.6 Jones et al. 
(1983b) 

31.0 41.6 6.0 85.0 2.9 Jones et al. 
(1983a) 

Zhilina (1983) 

Hurnsm feces H2/m Miller & 
Wolin (1983b) 
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Energy G&C itm pH Teap HaCl 
Ho. Organisa Strain History Source (%) (1/a) (%) (%) Referaice 

Order III. MethancmicrcAiales 

Family III-I. MethanomicrcAiiacea 

Gâuis III-I-I. MethanomicrfAiim 

16. Mm. BP Bovine rumen Mm. 
mobilis 

17. Mm. 
paynterx 

G2000 Marine sed. 

H2,f 48.8 

H2 44.9 3.5 7.0 40.0 0.9 Rivard et al. 
(1983) 

Gains III-I II. Metbanogâiium 

18. Mg. JRll Cariaco 
cariaci Trench sed. 

19. Mg. JRlm Black Sea 
marisnigri 

20. Mg. 
tatii 

21. Mg.̂  thermo- Marine sed. 
philicum 

22. Mg. RC/ER Freshwater 
oientangyi river sed. 

23. Mg. FR4 Freshwater 
Frit tony lake sed. 

H2,f 51.6 

H2,f 61.2 

H2,f 

H2 

H2,f 

54.4 1.5 

7.0 25.0 2.9 

6.4 25.0 1.2 

55.0 Rivard & 
Smith (1982) 

37.0 1.0 Corder et al» 
(1983) 

49.2 13.9 7.3 57.0 1.0 Harris et al. 
(1984) 
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Energy GtC ttm pH Temp ttaCl 
Ko. Organisa Strain History Source (%) (1/a) (%) (%) Referoice 

Gams Ill-l-lll. Hethanospirilltpi 

24. ffsp. JFl Sewage sludge H2,£ 45.0 
hangateii digester 

24a. Hsp. GPl Pear waste H2,f 46.5 
hungateii digester 

Genus III-I-IV. Methanococcodies (Sowers & Ferry, 1983) 

25. Mcc. TMAIO 19.8 m deep m,ma 42.0 3.2 
methylutens digester 

Family III II. Methanoplanaceae (Nildgruber et al., 1982) 

Genus III-II-I. Methanoplanus (Nildgruber et al., 1982) 

40.0 

7.0 35.0 

7.3 35.0 2.6 Sowers & 
Ferry, (1983) 

26. Mpl. H3 Steam H2,£ 47.5 2.4 7.0 40.0 1.0 Wildgruber 
limicola drilling et al, (1982) 
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Mo. Organis Strain History 
Energy GfcC 
Source (%) 

MaCl 
(%) Reference 

Family III-III. 

27. Ms. 
barker! 

27a. Ms. 
barker! 

27b. Ms. 
barker! 

27c. Ms. 
barker! 

27d. Ms. 
barker! 

27e. Ms. 
barker! 

28. Ms. 
(1984) 

maze! 

29. Ms. 
aceHvorans 

Ms. 
species 

Methanosarcina 

MS 

W 

UBS 

Z 

R1M3 

S6 

C2A 

TMl 

Sewage sludge 
digester 

Sewage sludge 
digester 

Genus III-III-I. Methanosarcina 

38.8 

Lab digester 

digester 

Marine sed. 

Lab digester 
digester 

H2,m 
ma,a 

H2,m 
ma,a 

H2,m 
ma,a 

H2,m 
ma,a 

H2,m 
ma,a 

H2,m 
ma,a 

H2,m 

ma,a 

m,ma 
a 

m,ma 

Gams III-III-II. Methanothri» (Huster, 1982) 

30. Mtx. 
soehngeai! 

Opfikon Sewage sludge a 
digester 

38.8 0.28 

40.5 

43.5 

51.0 

42.0 1.0 7.0 35.0 7.0 

42.0 3.2 

42.0 3.3 

31. 

Gams lll-lll-lll. Methanol(*us (Konig 6 Stetter, 1982) 

Tindari3 Marsh pond m,ma 40.0 Ml. 
t!ndar!us 

Marsh pond 
sed. 

6.7 40.0 1.2 

6.0 50.0 

51.9 0.2 7.6 37.0 

25.0 

Mah & Kuhn 

Mab (1980) 

Sowers et al. 
(1984) 

Zinder & Mah 
(1979) 

Huser et al, 
(1982) 

Konig 6 
Stetter (1982) 
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APPENDIX B. GROWTH YIELD AND KINETIC DATA OF SOME SELECTED FERMENTATIVE 

AND METHANOGENIC BACTERIA FOR BOTH PURE AND MIXED CULTURES 
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Reactions Tarn Ym& uĴ  kd*̂  Kgd Ym/AGO wm/Ym Reference 
(OO (g/e) (1/d) (l/d) (me/L) (g/kal) (e/g/d) 

Groî  Ilia (Haaoacetogatiesis) 

Methanol -» Acetate (AQO = -2.36 kcal/e) 

A. woodii 28.0 0.88 -

B. methylotrophicum 
(w/HCOOH) 
(w/CO) 

37.0 
37.0 

3.30 
1.51 

Group lilb (HoBt̂ ropianogenesis) 

Succinate -» prcpianate (AGO = -0.27 kcal/e) 

p. modestum 33.0 0.17 3.70 

P. modestum (w/yeast) 33.0 - 6.65 

Groiqi IIIc (HomAutyrogaiesis) 

Methanol •* butyrate (AGO = -i.07 kcal/e) 

B. methylotrophicum (w/acetate) 37.0 

0.37 

0.63 21.8 

0.83 

Bache fc Pfennig (1981) 

Kerby et al. (1983) 

Schink & Pfennig 
(1982) 

Zeikus et al. (1980) 

aTrue yield coefficient in g VSS or VS/elec. equiv. used. 

)%aximum specific growth rate in l/d = 0.693/doubling time. 

CDecay rate constant in l/d. 

Ĥalf-saturation constemt in m elec. equiv./L. 
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Reactions Team Ym® /iBjb kjc Yia/ÙGP wm/Ym Reference 
(OC) (g/e) (l/d) (l/d) (me/L) (g/kal) (e/g/d) 

Groi^ IV (Methanogeaesis) 

Formate •* Methane iùSP = -5.72 kcal/e) 

Mb. formicicum - 0.73 
Mb. formicicum (org. sup.) - 0.60 

00 •* Methane i&GP = -5.54 kcal/e) 

H2/OO2 Methane (AQO = -3.91 kcal/e) 

Ms. barkeri 
Mb. formicicum (org. sup.) -
Mb. bryaatii 
Mb. tlœrmoautotrophicum 

Mixed cultures 

Mathenatical model 

Mixed cultures 

37.0 

0.80 
0.44 
0.30 
0.20 

0.34 

0.25 

33.0 -

Ms. barkeri 
Ml. tindarius 

0.75 
0.51 

1.05 

0.50 

0.009 0.75 

0.11 

Methanol •* Methane (.ÙGP = -3.20 kcal/e) 

0.13 
0.11 

0.21 
0.11 
0.08 
0.05 

0.09 

0.06 

0.23 
0.16 

Daniels et al. (1984b) 

Daniels et al. (1984b) 

3.09 Shea et al. (1968) 

2.00 McCarty (1969) 

Kaspar and 
Wuhrmann (1978) 

Daniels et al. (1984b) 
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Reactions Taw» Yma 
(^ (g/e) (1%) (l?d) (m:?W 

Ym/AQO 
(g/kal) 

Mm/Ym 
(e/g/d) 

Reference 

Acetate •* Methane (AGO = -
Ms. barker! (org. sup.) 
Ms. barkeri 
Mtx. soehngenii 

•0.85 kcal/e) 
0.37 
0.28 
0.16 

0.44 
0.33 
0.19 

Daniels et aJ, 
(1984b) 

Mathaoatical model - 0.14 0.27 0.17 2.00 Mccarty (1969) 

Mixed cultures 35.0 
30.0 
25.0 

0.32 
0.43 
0.40 

0.34 
0.27 
0.24 

0.02 
0.04 
0.01 

20.6 
44.5 
116.2 

0.38 
0.51 
0.47 

1.08 
0.64 
0.62 

Lawrence & 
Mccarty (1969) 

Mixed cultures 
(13.2% atm) 

35.0 0.35 2.62 0.44 33.4 0.41 7.49 Finney & 
Evans II (1975) 

Mixed cultures 33.0 - - 2.67 Kaspar and 
Muhrmann (1978) 

Mixed cultures 37.0 - 0.69 19.3 Powell et al, (1983) 

Fluidized bed modeling 35.0 - - 1.15 0.55 Wang et al. (1985) 

Propionate Methane (60° 
S. tfoliaxi/Msp. hungateii 
S. wolioii/Desulfcvibrio 

= -0.905 kcal/e) 
35.0 0.10 
35.0 0.19 

Boone & Bryant (1980) 

Mixed cultures 35.0 
25.0 

0.34 
0.41 

0.44 
0.54 

0.01 
0.04 

4.38 
82.0 

0.38 
0.45 

1.28 
1.31 

Lawrence & 
McCarty (1969) 

Mixed cultures 33.0 22.0 Kaspar and 
Wuhrmann (1978) 

Mixed cultures 
td=14.5 d, w/ glucose 
td= 8.2 d, w/ glucose 
td= 8.2 d, w/o glucose 

35.0 
35.0 
35.0 

0.13 
0.96 
1.20 

2.18 
77.5 
62.4 

Heyes & Hall (1983) 

Mixed cultures 35.0 1.16 Guyot et al. (1985) 
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Reactions Temp j^jc Kgd Yjb/ÙGP (im/Ym Reference 
(%) (g/e) (l/d) (l/d) (me/L) (g/kal) (e/g/d) 

Butyrate •* Methane iùGP = -2.04 kcal/e) 

S. wolfei/Msp. hungatei 
S. wolfei/Desulfovibrio 

Mixed cultures 

35.0 - 0.18 
35.0 - 0.31 

35.0 0.38 0.79 0.027 0.67 

Valerate •* Methane 

S. wolfei/Msp. huagatei 
S. wolfei/Desulfovibrio -

Amino & fatty acids •* Methane 

Mixed cultures 35.0 

0.92 
0.18 

0.43 -

Glucose & starch •* Methane 

Mixed cultures 35.0 3.68 -

Mutriait broth •* Methane 

Mixed cultures 35.0 0.61 -

0.038 

0.088 

0.014 

Mclnerney et al, 
(1981) 

0.19 2.09 Lawrence & 
McCarty (1969) 

iteXnerney et al, 
(1981) 

Speece & McCarty 

Speece & McCarty 
(1962) 

Speece & McCarty 
(1962) 
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Reactions Tarn Ym^ kdC Kgd Ym/AGO wm/Ym Reference 
(OC) (g/e) (l/d) (1/d) (me/L) (g/kal) (e/g/d) 

Dextrose -* Methane 

Mixed culture 

Lipids •* Methane 

Mixed cultures 

Saturated acids •* Methane 

Mixed cultures 
Stearic (18-C) 
Palmiticde^) 
M%Tistic(14-C) 

Ibisaturated acids -» Methane 

Mixed culture 
Oleric (18-C) 
Linoleic(18-C) 

35.0 1.12 0.92 

35.0 
25.0 
20.0 

37.0 
37.0 
37.0 

37.0 
37.0 

0.020 

250.0 
465.0 
577.5 

52.1 
17.9 
13.1 

397.5 
227.0 

0.82 

0.83 
0.58 
0.48 

Andrews & Pearson 
(1965) 

O'Rourke (1968) 

0.01 Novak & Carlson 
0.13 (1970) 
0.12 

0.50 Novak SI Carlson 
0.63 (1970) 

to GK 
U1 

1 

1 
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APPENDIX C. OUTLINE OF ACETOCLASTIC METHANOGENIC ACTIVITY (AMA) TEST 
PROCEDURES 
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Phase I. Preparation of Experimental Apparatus and Buffer Solution 

A. Preparation of manometer 

(1) Fill the manometer half-way with a suitable density of liquid. 
Avoid air trap in the liquid. 

B. Preparation of Incubation flask and connection 

(1) Prepare 500-mL wide-mouth Erlenmeyer flasks. 

(2) Install a #10 butyl rubber stopper with 2 septa. 

(3) Prepare a suitable length of low permeability tubing. Install 
one end of the tubing with a hypodermic needle and connect the 
other end to the manometer. 

C. Leak check 

(1) Fill the incubation flask with 450 mL water and cap it with the 
2-septum rubber stopper. 

(2) Shake the flask rigorously for a few minutes and stand by in the 
35° C room for at least 1 hour before use. 

(3) Adapt the flask with central septum to the manometer. 

(4) Pressurize the flask to 30 cm of manometer liquid and stand by 
for at least 1 hour for leak check. 

D. Preparation of buffer solution 

(1) Prepare a suitable amount of buffer solution of 0.27 gm 
KH2PO4/L, 0.35 gm K2HPO4/L, and 1.2 gm NaHCOg/L, if sample 
dilution is required or attached growth is to be tested. 

(2) Measure a suitable amount of buffer solution into incubation 
flasks so that the final incubation volume is to be 450 mL. 

(3) Purge the buffer solution in the flask with nitrogen gas at a 
gasing rate of 0.5 L/min for 1 min to remove DO. Cap the flask 
right after the purging. 

(4) Add 1 mL of reducing agent NazS through septum using a syringe 
to make InM of sulfide. 

(5) Partially release the nitrogen pressure in the flask using a 
syringe and place the solution in the constant temperature room. 
Allow for at least 1 hour before use. 
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Phase II. Sample Collection and Seeding 

E. Sample collection and seeding 

(1) Purge the sampling bottles with nitrogen gas right before 
sampling at a gasing rate of 0.5 mL/min for 1 min. 

(2) Secure a suitable a amount of blomass from reactors. 

(3) Carefully open the flask and inoculate a suitable amount of 
blomass so that the total amount of blomass is not more than 0.5 
gm VSS and the final volume is 450 mL. 

(4) Be sure to include a reagent blank (without seeding) for 
comparison. 

Phase III. Culturing and Monitoring 

F. Sample stabilization 

(1) Cap the flask right after the seeding and inject another 1 mL 
Ka2S to the flask to make the solution 1 mM of sulfide. 

(2) Standby the flask in the constant temperature room for at least 
1 hour to allow for recovery from oxygen exposure. 

G. Adding substrate and starting monitoring 

(1) Inject 5 mL of NaAc to make the solution of 1.67 gm HAc. 

(2) Gently shake the flask. Adapt the flask to the manometer and 
zero the manometer to start monitoring. 

(3) Read the manometer every 0.5 hour for at least 6 hours of 
incubation. 

(4) Gently shake the flask by hand for 30 sec every 30 min after 
each reading. 

(5) Record the local barometric pressure and operating temperature 
several times throughout the incubation period. 

Phase IV. Calibration of Manometer 

H. Calibration of manometer 

(1) Read the manometer after incubation. 
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(2) Withdraw gas from flasks with an Increment of 2000 uL gas using 
a mlcrosyrlnge through the side septum and record the 
corresponding nanometer readings (h). 

(3) Convert the amount of each accumulated gas withdrawn at the 
operating barometric pressure and temperature (vp) to conditions 
of 0® and 1 atm (vg). 

(4) Plot Vg against h and calculate the slope and linearity, using 
the least square linear regression method. 

Phase V. Methane/VSS Analysis and Data Handling 

I. Methane and VSS analysis 

(1) At the end of the incubation, withdraw a suitable amount of 
blogas from the flask in the incubation room, using a 
mlcrosyrlnge. 

(2) Inject the withdrawn blogas Into a gas chromatograph to 
determine the methane content using at least 3 replicates. 

(3) Harvest the biomass after the GC analysis to determine the VSS 
at 550° C according to the Standard Method. 

J. Data handling 

(1) Calculate the methane production rate. 

(2) Calculate the AHA (L CH4 produced at STP/gm VSS/day). 

(3) Report the AMA values with the incubation temperature if other 
than 35° C is used. 
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APPENDIX D. SMAR AVERAGE DAILY GAS PRODUCTION 
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DAILY AVERAGE GAS PRODUCTION 

Legend 
O SMAR-A 

• SMAR-B 

#SMAR-C 
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FIGURE 56. SMAR average daily gas production (day 0 to 70) 
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DAILY AVERAGE GAS PRODUCTION 
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FIGURE 57. SMAR average daily gas production (day 70 to 140) 
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FIGURE 58. SMAR average daily gas production (day 140 to 210) 
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DAILY AVERAGE GAS PRODUCTION 
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FIGURE 59 - SMAR average daily gas production (day 210 to 280) 



www.manaraa.com
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FIGURE 60 . SMAR average daily gas production (day 280 to 350) 
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FIGURE 61. SMAR average daily gas production (day 350 to 415) 
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APPENDIX E. SMAR STEADY-STATE PROFILE DATA 
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Run la 

SMAR Height SCOD TOA TSS VSS AMA pH 
Port (cm) (mg/L)(mg/L)(mg/L) (%) (L/g/d) 

(inf) 0.0 1910 
A-1 15.2 125 NA 60 82 
A-2 30.5 206 60 85 
A-3 53.3 

0 
250 
1910 

60 87 

B-1 15.2 104 ERR ERR 
B-2 30.5 112 90 72 
B-3 61.0 151 40 80 
B-4 91.4 171 30 81 
B-5 121.9 

0 
130 
1910 

20 82 

C-1 15.2 137 ERR ERR 
C-2 30.5 96 ERR ERR 
C-3 61.0 96 80 79 
C-4 91.4 91 50 87 
C-5 152.4 95 30 81 
C-6 213.4 82 20 82 
C-7 281.8 90 20 75 

Run 2al 

SMAR Height SCOD TOA TSS VSS AMA pH 
Port (cm) (mg/L)(mg/L)(mg/L) (%) (L/g/d) 

(Inf) 0.0 4130 
A-1 15.2 172 80 93 0.56 
A-2 30.5 138 60 100 0.66 
A-3 53.3 143 60 93 0.72 

0 4130 
B-1 15.2 124 180 67 ERR 
B-2 30.5 257 260 71 0.22 
B-3 61.0 328 130 76 0.30 
B-4 91.4 370 130 74 0.38 
B-5 121.9 355 90 81 0.42 

0 4130 
C-1 15.2 1146 390 72 ERR 
C-2 30.5 210 160 73 ERR 
C-3 61.0 219 250 75 0.22 
C-4 91.4 205 220 75 0.27 
C-5 152.4 192 200 74 0.21 
C-6 213.4 189 120 71 0.43 
C-7 281.8 208 160 74 0.13 
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Run 2a2 

SMAR Height SCOD TOA TSS VSS 
Port (cm) (mg/L)(mg/L)(mg/L) (%) 

(Inf) 0.0 3760 
A-1 15.2 80 NA 80 80 
A-2 30.5 79 80 83 
A-3 53.3 101 70 96 

0 3760 
B-1 15.2 77 1060 78 
B-2 30.5 77 290 78 
B-3 61.0 98 70 91 
B-4 91.4 111 110 85 
B-5 121.9 181 110 86 

0 3760 
C-1 15.2 625 10460 83 
C-2 30.5 364 2710 83 
C-3 61.0 137 160 85 
C-4 91.4 89 120 85 
C-5 152.4 96 90 80 
C-6 213.4 73 90 80 
C-7 281.8 70 90 85 

AMA pH 

NA NA 

Run 2b 

SMAR Height SCOD TOA TSS VSS AMA pH 
Port (cm) (rag/L)(mg/L)(mg/L) (%) (L/g/d) 

(Inf) 0 1760 
A-1 15.2 41 30 37 79 
A-2 30.5 46 7 33 78 
A-3 53.3 78 23 80 89 

0 1760 
B-1 15.2 85 37 580 72 
B-2 30.5 65 20 53 74 
B-3 61.0 42 5 40 75 
B-4 91.4 42 4 44 78 
B-5 121.9 85 39 48 74 

0 1760 
C-1 15.2 909 486 2560 86 
C-2 30.5 119 119 470 80 
C-3 61.0 68 22 54 78 
C-4 91.4 59 15 49 81 
C-5 152.4 59 4 51 84 
C-6 213.4 48 12 49 74 
C-7 281.8 55 36 80 
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Run 2c 

SMAR Height SCOD TOA TSS VSS AMA PH 
Port (cm) (mg/L)(mg/L)(mg/L) (%) (L/g/d) 

(inf) 0 870 
A-1 15.2 182 83 50 96 NA NA 
A-2 30.5 124 46 50 87 
A-3 53.3 

0 
104 
870 

37 40 81 

B-1 .15.2 172 76 1560 80 
B-2 30.5 170 80 550 80 
B-3 61.0 47 11 60 88 
B-4 91.4 59 17 120 79 
B-5 121.9 

0 
100 
870 

44 180 87 

C-1 15.2 325 152 520 89 
C-2 30.5 378 167 500 82 
C-3 61.0 189 57 360 88 
C-4 91.4 84 22 50 92 
C-5 152.4 46 8 40 83 
C-6 213.4 40 1 20 82 
C-7 281.8 41 2 

Run 4a 

20 75 

SMAR Height SCOD TOA TSS VSS AMA PH 
Port (cm) (mg/L)(mg/L)(mg/L) (%) (L/g/d) 

PH 

(Inf) 0 7790 
A-1 15.2 151 30 150 75 0.28 7.20 
A-2 30.5 153 52 200 80 0.23 7.20 
A-3 53.3 

0 
148 
7790 

65 240 79 0.15 7.20 

B-1 15.2 128 91 8700 81 0.14 7.26 
B-2 30.5 332 235 3740 82 0.14 7.22 
B-3 61.0 201 86 1480 81 0.10 7.25 
B-4 91.4 165 43 830 83 0.05 7.20 
B-5 121.9 

0 
153 
7790 

27 610 83 0.05 7.22 

C-1 15.2 532 276 6890 84 0.10 7.08 
C-2 30.5 690 339 4810 88 0.09 7.02 
C-3 61.0 866 560 2290 88 0.15 6.94 
C-4 91.4 787 580 1480 88 0.05 6.95 
C-5 152.4 184 80 180 83 0.21 7.15 
C-6 213.4 152 35 220 82 0.20 7.17 
C-7 281.8 152 29 210 85 0.12 7.20 
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Run 4bl 

SMAR Height SCOO TOA TSS VSS AMA pH 
Port (cm) (mg/L)(mg/L)(mg/L) (%) (L/g/d) 

(Inf) 0 3820 
A-1 15.2 85 31 110 75 0.34 7.20 
A-2 30.5 82 18 100 76 0.32 7.30 
A-3 53.3 191 70 130 78 0.27 7.28 

0 3820 
B-1 15.2 171 41 260 79 0.08 7.15 
B-2 30.5 144 42 270 77 0.20 7.40 
B-3 61.0 132 13 190 77 0.28 7.40 
B-4 91.4 122 19 190 73 0.31 7.25 
B-5 121.9 177 46 210 79 0.24 7.32 

0 3820 
C-1 15.2 563 337 670 85 0.07 6.88 
C-2 30.5 806 620 120 78 0.10 6.86 
C-3 61.0 221 120 130 80 0.50 7.25 
C-4 91.4 137 37 130 77 0.51 7.22 
C-5 152.4 98 26 110 81 0.51 7.20 
C-6 213.4 99 14 100 80 0.63 7.28 
C-7 281.8 112 16 120 76 0.53 7.35 

Run 4c 

SMAR Height SCOD TOA TSS VSS AMA pH 
Port (cm) (rag/L)(mg/L)(mg/L) (%) (L/g/d) 

(Inf) 0 1720 
A-1 15.2 99 116 250 81 ERR 6.68 
A-2 30.5 144 77 280 88 6.52 
A-3 53.3 109 44 220 80 6.52 

0 1720 
B-1 15.2 128 64 3620 73 6.62 
B-2 30.5 205 136 2180 83 6.48 
B-3 61.0 79 37 600 75 6.52 
B-4 91.4 67 16 330 77 6.56 
B-5 121.9 53 23 340 79 6.46 

0 1720 
C-1 15.2 309 231 3760 76 6.52 
C-2 30.5 449 325 2310 88 6.52 
C-3 61.0 1163 940 1650 85 6.11 
C-4 91.4 292 201 350 70 6.38 
C-5 152.4 82 146 210 70 6.49 
C-6 213.4 70 52 250 66 6.54 
C-7 281.8 62 34 210 57 6.54 
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Run 6bl 

SMAR Height SCOD TOA TSS VSS AMA pH 
Port (cm) (mg/L)(mg/L)(mg/L) (%) (L/g/d) 

(inf) 0 6310 
A-l 15.2 618 504 2020 59 0.11 6.80 
A-2 30.5 431 330 1600 57 0.14 6.85 
A-3 53.3 311 230 1220 51 0.13 6.90 

0 6310 
B-1 15.2 753 499 11190 72 0.12 6.62 
B-2 30.5 346 187 6160 72 0.15 6-. 74 
B-3 61.0 135 65 1620 55 0.06 6.93 
B-4 91.4 143 71 1690 57 0.08 6.92 
B-5 121.9 180 100 1390 55 0.09 6.90 

0 6310 
C-1 15.2 780 400 4590 65 0.15 6.45 
C-2 30.5 2460 1967 6850 66 0.09 6.48 
C-3 61.0 4673 2972 6290 69 0.14 6.35 
C-4 91.4 ERR 3898 9350 64 0.15 6.35 
C-5 152.4 256 221 1090 48 0.11 6.91 
C-6 213.4 207 107 960 41 0.12 6.93 
C-7 281.8 203 96 950 41 0.14 6.93 

Run 6b2 

SMAR Height SCOD TOA TSS VSS AMA pH 
Port (cm) (mg/L)(mg/L)(mg/L) (%) (L/g/d) 

(Inf) 0 6220 
A-l 15.2 514 324 990 79 0.11 6.64 
A-2 30.5 394 240 840 79 0.10 6.72 
A-3 53.3 247 111 840 78 0.04 6.78 

0 6220 
B-1 15.2 1182 649 9230 83 0.18 6.45 
B-2 30.5 417 252 2810 83 0.20 6.60 
B-3 61.0 146 82 1120 82 0.07 6.67 
B-4 91.4 137 58 860 83 0.05 6.67 
B-5 121.9 156 52 660 82 0.05 6.72 

0 6220 
C-1 15.2 1432 973 2070 82 0.13 6.37 
C-2 30.5 759 515 2480 81 0.10 6.43 
C-3 61.0 670 411 2870 81 0.16 6.46 
C-4 91.4 875 556 3370 83 0.19 6.39 
C-5 152.4 258 181 390 78 0.12 6.60 
C-6 213.4 173 65 500 88 0.07 6.67 
C-7 281.8 169 78 260 72 0.11 6.72 
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Run 8a 

SMAR Height SCOD TOA TSS VSS AMA pH 
Port (cm) (mg/L)(mg/L)(mg/L) (%) (L/g/d) 

(inf) 0 17070 
A-1 15.2 556 388 1430 86 MA 7.10 
A-2 30.5 539 297 1560 89 7.12 
A-3 53.3 408 222 1260 88 7.17 

0 17070 
B-1 15.2 535 320 12950 84 6.85 
B-2 30.5 278 163 5170 86 7.12 
B-3 61.0 148 43 2460 83 7.15 
B-4 91.4 146 24 2370 86 7.12 
B-5 121.9 182 44 2070 87 7.20 

0 17070 
C-1 15.2 1884 1315 5450 87 6.84 
C-2 30.5 ERR 1833 8890 89 6.76 
C-3 61.0 2019 1368 8050 90 6.80 
C-4 91.4 5226 2253 7610 87 6.58 
C-5 152.4 917 392 2330 88 7.10 
C-6 213.4 376 33 1940 90 7.12 
C-7 281.8 338 131 1720 90 7.12 

Run 10a 

SMAR Height SCOD TOA TSS VSS AMA pH 
Port (cm) (mg/L)(mg/L)(mg/L) (%) (L/g/d) 

(Inf) 0 18600 
A-1 15.2 1050 470 4820 MA 6.97 
A-2 30.5 758 328 5740 7.03 
A-3 53.3 536 143 2540 7.12 

B-1 15.2 2506 1215 8080 6.73 
B-2 30.5 1036 606 6300 6.96 
B-3 61.0 565 151 4760 7.09 
B-4 91.4 387 81 3720 7.08 
B-5 121.9 414 73 2820 7.13 

C-1 15.2 8857 1573 50330 4.69 
C-2 30.5 5921 842 12250 5.55 
C-3 61.0 1392 811 4620 6.66 
C-4 91.4 4096 1691 9600 5.92 
C-5 152.4 718 266 2880 6.94 
C-6 213.4 392 58 1860 6.96 
C-7 281.8 354 74 1860 6.93 
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Run 10aG2 

SMAR Height SCOD TOA TSS VSS AMA PH 
Port (cm) (mg/L)(mg/L)(mg/L) (%) (L/g/d) 

PH 

(inf) 0 17740 
A-1 15.2 412 70 3640 NA 6.89 
A-2 30.5 503 241 2920 7.02 
A-3 53.3 298 43 2910 7.09 

17740 
B-1 15.2 1376 732 6980 6.75 
B-2 30.5 538 182 9500 7.04 
B-3 61.0 385 32 1600 7.13 
B-4 91.4 331 21 1440 7.15 
B-5 121.9 234 12 1860 7.15 

17740 
C-1 15.2 10269 2636 17000 5.52 
C-2 30.5 8691 2654 65900 5.54 
C-3 61.0 2273 1243 3560 6.65 
C-4 91.4 2988 1264 2180 6.57 
C-5 152.4 371 64 2360 7.10 
C-6 213.4 265 37 920 7.13 
C-7 281.8 209 26 960 7.11 

Run 10c 

SMAR Height SCOD TOA TSS VSS AMA pH 
Port (cm) (mg/L)(mg/L)(mg/L) (%) (L/g/d) 

pH 

(Inf) 0 4550 
A-1 15.2 684 571 400 83 0.12 6.48 
A-2 30.5 476 342 180 87 0.14 6.60 
A-3 53.3 469 384 200 84 0.14 6.63 

0 4550 
B-1 15.2 1767 1251 1810 87 0.16 5.92 
B-2 30.5 517 366 740 86 0.19 6.32 
B-3 61.0 193 96 330 86 0.17 6.65 
B-4 91.4 184 74 340 84 0.14 6.69 
B-5 121.9 190 85 200 84 0.17 6.70 

0 4550 
C-1 15.2 1169 716 1280 88 0.06 6.35 
C-2 30.5 942 697 1960 86 0.11 6.40 
C-3 61.0 1196 857 1670 91 0.10 6.32 
C-4 91.4 2665 2106 4120 89 0.07 5.98 
C-5 152.4 770 543 850 86 0.17 6.40 
C-6 213.4 367 231 190 87 0.13 6.60 
C-7 281.8 306 194 170 84 0.14 6.75 
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APPENDIX F. SMAR STEADY-STATE C2-C5 VOLATILE ACIDS 

Total organic acids (TOA) is defined as the sum of the acetic acid 
(HAc)» propionic acid (HPr), iso-butyric acid (I-But), n-butyrlc acid (n-
But), 2-methyl butyric acid (2-m But), iso-valeric acid (I-Val), and n-
valerlc acid (n-Val), in the expression of acetic acid. Each individual 
acid Is expressed as its acid, in mg/L. 
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Sample 
ID 

HAc 
(mg/L) 

HPr 
(mg/L) 

I-But 
(mg/L) 

n-But 
(mg/L) 

2-m But 
(mg/L) 

I-Val 
(mg/L) 

n-Val 
(mg/L) 

TOA 
(mg/L) 

Run 2b 
A1 13.2 1.6 0.7 3.1 0.0 2.5 3.1 30.3 

A2 4.9 0.4 0.0 1.0 0.0 0.0 0.0 6.8 

A3 12.0 0.0 1.0 4.0 1.1 1.2 0.0 23.2 

B1 17.4 4.2 0.9 5.6 1.4 1.4 0.5 37.3 

B2 9.5 1.9 0.6 2.9 0.7 0.8 0.5 20.4 

B3 1.2 0.1 0.9 0.9 0.2 0.3 0.0 4.8 

B4 1.4 0.5 0.2 1.4 0.0 0.0 0.0 4.4 

B5 17.4 5.5 2.0 3.3 1.8 1.6 1.1 39.4 

CI 170.4 93.8 17.5 64.2 16.0 18.7 12.5 486.1 

C2 55.9 15.1 2.5 19.1 2.9 3.6 1.0 119.0 

C3 11.4 0.1 0.8 3.2 1.0 1.5 0.0 21.6 

C4 7.9 1.1 0.5 2.3 0.3 0.3 0.0 14.5 

C5 9.0 0.9 0.4 1.4 0.6 0.6 0.0 14.7 

C6 2.6 0.0 0.0 0.6 0.3 0.2 0.0 4.2 

C7 9.3 0.5 0.4 0.7 0.2 0.2 0.0 12.1 

Run 2c 
A1 38.9 11.0 6.2 7.5 1.1 3.4 1.8 83.2 

A2 28.6 5.1 2.0 4.0 0.0 0.8 0.4 45.7 

A3 18.1 6.6 2.7 1.6 1.2 1.5 0.1 37.4 

B1 38.0 8.9 2.8 10.9 1.6 2.0 0.6 76.2 

B2 41.6 9.4 1.6 12.2 1.2 1.7 0.9 79.8 

B3 5.7 2.2 0.7 1.0 0.0 0.0 0.0 11.0 

B4 7.9 2.0 2.1 2.5 0.0 0.0 0.0 17.1 

B5 18.8 4.7 4.9 4.5 1.4 1.6 0.3 44.1 

CI 74.8 20.6 5.0 20.5 2.7 3.9 1.9 151.7 

C2 84.2 20.2 4.5 26.1 2.6 3.4 1.8 167.1 

C3 31.3 7.7 1.7 6.7 0.9 1.4 0.0 57.1 

C4 11.2 2.0 3.9 1.1 0.2 0.4 0.0 21.9 

C5 2.6 0.4 0.0 3.6 0.0 0.0 0.0 8.3 

C6 0.9 0.0 0.0 0.1 0.0 0.0 0.0 1.1 

C7 1.0 0.0 0.0 0.6 0.0 0.0 0.0 1.8 
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SMAR Steady-State C2-C5 volatile acids 

Sample HAc HPr I-But n-But 2-m But I-Val n-Val TOA 
ID (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Run 4a 
A1 14.5 7.8 0.8 0.6 0.0 0.5 1.7 30.0 

A2 28.3 12.7 1.5 0.8 0.3 1.5 0.8 51.8 

A3 34.7 18.1 1.7 0.6 0.8 2.1 0.0 65.4 

B1 35.4 24.2 3.9 3.7 0.0 3.7 4.8 90.7 

B2 100.3 57.6 10.7 10.8 6.1 7.1 5.6 234.9 

B3 44.8 24.4 1.4 1.1 1.4 1.9 1.2 86.1 

B4 26.9 8.9 0.6 0.5 0.6 0.8 0.5 42.5 

B5 17.5 5.9 0.4 0.2 0.2 0.5 0.3 27.2 

CI 111.7 81.3 9.3 8.5 7.3 9.5 5.3 275.6 

C2 136.5 96.3 10.3 11.1 8.8 11.5 10.3 338.6 

C3 197.5 157.6 19.4 22.8 16.6 22.9 22.7 559.6 

C4 225.0 157.4 18.8 22.2 16.2 23.1 19.8 579.7 

C5 46.1 18.3 1.8 0.9 1.5 1.5 1.6 80.3 

C6 21.0 6.9 0.7 0.4 0.5 0.4 1.3 34.8 

C7 19.1 5.4 0.7 0.2 0.5 0.6 0.4 29.5 

Run 4bl 
A1 12.8 4.2 1.9 2.3 0.0 2.1 2.2 31.4 

A2 7.9 2.5 0.7 1.3 0.2 1.3 0.6 17.6 

A3 30.4 15.1 2.9 4.6 1.8 3.1 1.0 70.1 

BI 19.0 6.9 1.8 2.6 1.7 1.3 0.9 40.5 

B2 17.3 7.3 3.2 3.0 0.9 2.1 0.7 41.7 

B3 8.5 1.7 0.4 0.5 0.2 0.5 0.0 13.1 

B4 11.4 3.3 0.6 0.8 0.4 0.5 0.0 19.2 

B5 22.5 9.4 1.5 2.0 1.5 1.5 0.9 46.0 

CI 129.2 80.9 14.6 19.0 11.9 13.7 8.9 336.9 

C2 229.9 136.0 20.1 65.9 18.0 22.5 16.3 620.4 

C3 42.2 35.1 4.3 8.4 3.2 4.1 1.9 119.7 

C4 14.6 4.8 1.0 5.3 1.5 1.9 0.7 36.7 

C5 13.7 4.8 1.0 1.4 0.7 1.3 0.0 26.4 

C6 8.7 2.3 0.4 0.5 0.3 0.3 0.0 13.9 

C7 8.8 1.9 0.5 0.6 0.9 0.8 0.0 15.6 
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SMAR Steady-State C2-C5 volatile acids 

Sample HAc HPr I-But n-But 2-m But I-Val n-Val TOA 
ID (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Run 4c 
A1 51.9 28.4 3.8 5.0 0.9 3.6 5.1 116.1 

A2 32.8 19.8 2.4 4.0 1.4 2.8 1.7 76.8 

A3 19.5 11.0 1.6 1.5 0.8 2.0 0.6 43.5 

B1 26.1 16.5 2.2 2.7 1.5 2.5 1.9 63.7 

B2 54.7 35.7 4.8 6.6 3.8 4.8 3.8 136.3 

B3 17.0 9.9 1.1 0.8 0.9 1.3 0.8 36.9 

B4 5.9 5.6 0.4 0.2 0.1 0.3 0.9 15.8 

B5 5.3 12.3 0.3 0.2 0.0 0.3 0.6 22.7 

CI 94.8 62.7 7.5 9.5 6.1 8.0 6.2 231.4 

C2 99.8 110.6 12.1 10.7 9.3 14.3 8.7 324.6 

C3 304.7 249.3 28.0 96.2 22.6 34.9 28.2 940.1 

C4 83.7 48.5 3.9 23.0 3.3 4.7 2.6 201.2 

C5 78.7 28.4 6.1 4.2 0.0 4.0 6.0 145.8 

C6 21.7 14.1 2.4 3.0 0.0 2.8 0.0 51.8 

C7 13.6 15.3 1.3 0.0 0.0 0.0 0.0 34.4 

Run 6bl 
A1 224.0 101.0 19.3 30.8 12.0 17.0 19.3 504.0 

A2 149.6 76.1 11.8 16.1 7.8 9.5 9.5 329.8 

A3 108.5 60.1 7.2 6.3 5.3 5.6 5.3 229.9 

B1 135.7 157.8 27.9 5.6 30.8 24.8 14.7 499.1 

B2 66.4 56.2 8.1 4.5 7.3 6.0 6.0 187.0 

B3 34.4 17.3 1.4 0.7 1.1 1.4 1.2 64.9 

B4 38.3 20.0 1.3 0.8 0.9 0.7 1.5 71.3 

B5 53.0 27.8 1.9 1.4 1.4 2.3 1.1 100.3 

CI 148.2 155.0 11.1 4.6 11.7 6.5 4.1 400.2 

C2 488.9 488.3 98.5 144.3 78.2 119.9 107.9 1967.3 

C3 602.8 707.0 146.4 214.0 130.5 206.0 233.1 2971.9 

C4 647.3 784.5 216.4 360.2 169.6 281.3 394.8 3898.2 

C5 98.1 51.4 6.7 8.3 4.8 8.0 9.0 220.6 

C6 57.0 23.3 2.9 2.2 3.0 2.7 2.4 107.1 

C7 55.4 21.4 2.6 1.2 1.7 2.3 1.2 96.3 
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SMAR Steady-State C2-C5 volatile acids 

Sample HAc HPr I-But n-But 2-m But l-Val n-Val TOA 
ID (rag/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Run 6b2 
A1 137.8 63.0 10.7 23.3 9.5 8.3 16.6 324.0 

A2 113.3 51.9 8.3 10.8 6.4 6.1 7.9 240.0 

A3 54.7 23.8 3.5 3.6 2.8 2.2 4.9 111.5 

B1 164.1 156.8 41.9 29.6 33.9 35.8 40.2 649.0 

B2 110.7 50.1 11.2 16.7 7.8 7.5 7.3 251.6 

B3 41.1 17.3 2.1 1.4 2.8 2.8 3.1 82.2 

B4 33.2 18.8 1.2 0.0 0.0 0.0 0.0 58.1 

B5 29.4 16.1 1.7 0.0 0.0 0.0 0.0 51.8 

CI 284.0 188.4 40.3 100.1 37.9 51.1 58.3 972.8 

C2 193.8 100.4 19.6 49.0 14.1 17.9 25.1 515.3 

C3 177.6 82.0 13.2 36.5 10.5 10.3 14.2 411.1 

C4 220.5 108.9 20.5 56.1 14.6 15.3 22.2 555.6 

C5 80.9 39.1 5.3 11.5 1.4 6.0 8.9 181.4 

C6 39.5 17.1 1.7 1.7 0.0 0.0 0.0 65.5 

C7 37.3 18.4 1.5 2.2 3.0 2.7 1.9 78.3 

Run 8a 
A1 216.2 72.7 12.5 15.2 8.5 9.7 6.0 387.6 

A2 167.8 62.0 8.8 8.3 5.1 6.5 4.8 297.4 

A3 136.9 50.0 7.1 3.0 2.5 2.3 0.0 221.6 

B1 126.0 82.2 15.8 5.5 11.7 11.6 12.9 320.3 

B2 74.3 31.9 5.5 2.8 7.0 7.4 7.4 163.0 

B3 30.7 9.0 1.1 0.0 0.0 0.0 0.0 43.4 

B4 9.6 7.3 1.4 2.2 0.0 0.0 0.0 23.9 

B5 31.9 8.6 0.7 0.5 0.0 0.0 0.0 44.3 

CI 503.6 291.0 55.3 76.0 41.1 58.7 53.1 1314.9 

C2 562.4 440.3 86.7 125.9 59.7 92.5 92.5 1833.5 

C3 505.5 324.3 58.7 72.2 43.1 60.7 55.2 1367.7 

C4 624.4 531.0 96.7 234.8 72.5 97.7 116.4 2252.5 

C5 194.3 87.0 11.1 10.9 11.8 13.8 8.5 391.8 

C6 17.6 8.9 1.3 1.4 0.0 0.0 0.0 32.5 

C7 74.5 28.5 2.0 1.7 4.0 5.1 0.0 130.7 
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SMAR Steady-State C2-C5 volatile acids 

Sample HAc HPr I-But n-But 2-m But 1-Val n-Val TOA 
ID (mg/L) (mg/L) (mg/L) (rag/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Run 10a 
A1 238.7 98.6 14.3 19.0 9.6 9.3 16.9 469.7 

A2 156.5 91.5 8.2 9.3 5.9 4.5 8.8 327.7 

A3 75.1 46.1 1.9 0.6 1.3 1.2 1.8 143.0 

B1 446.1 233.0 45.7 124.3 34.4 37.7 64.6 1215.2 

B2 293.0 138.9 18.7 28.2 14.5 11.9 16.3 605.8 

B3 77.3 30.7 5.6 5.2 0.9 5.2 5.6 151.0 

B4 43.5 20.9 1.8 2.5 0.5 1.8 1.0 81.1 

B5 40.8 17.5 3.1 2.0 0.4 1.0 0.4 73.0 

CI 667.7 105.2 10.8 440.3 8.6 9.4 49.0 1572.9 

C2 656.9 294.8 26.9 410.6 26.7 17.7 61.2 1841.6 

C3 317.5 133.4 21.6 142.5 12.5 10.8 28.7 811.3 

C4 666.7 358.6 47.5 206.9 34.5 21.3 67.3 1691.5 

C5 134.2 43.0 6.6 30.6 5.2 2.1 6.8 265.7 

C6 36.0 5.7 0.9 5.7 1.7 0.0 1.5 58.1 

C7 43.0 13.8 1.0 5.2 0.4 0.5 2.0 74.1 

Run lOaGl 
A3 27.6 11.5 1.5 4.4 1.4 1.3 1.4 57.3 

B5 13.2 5.4 0.5 2.4 0.4 0.5 0.6 26.5 

C7 7.7 5.5 0.2 3.5 0.4 0.2 0.9 22.4 

Run 10aG2 
A1 30.5 13.9 3.4 3.5 0.3 3.3 3.9 70.4 

A2 107.4 44.7 9.0 21.2 5.2 7.4 7.6 241.3 

A3 26.2 6.5 1.2 1.8 0.7 1.1 0.7 42.8 

B1 226.1 96.6 30.3 157.2 18.2 18.5 29.0 731.6 

B2 75.3 25.7 9.4 24.1 5.0 4.1 6.5 182.4 

B3 16.4 4.5 1.1 3.6 0.5 0.8 0.7 31.8 

B4 10.3 4.5 0.6 1.8 0.5 0.3 0.3 21.3 

B5 6.4 2.2 0.3 1.0 0.1 0.0 0.6 12.3 

CI 749.0 198.9 167.9 445.5 146.6 231.1 59.0 2636.2 

C2 645.1 383.2 132.4 323.4 129.0 177.8 203.7 2654.0 

C3 438.9 156.5 51.3 143.4 34.5 93.0 63.9 1242.7 

C4 427.7 202.4 56.5 127.8 37.2 58.2 90.8 1264.2 

C5 26.9 4.7 2.2 11.6 1.0 1.5 4.1 64.3 

C6 16.8 3.9 0.8 6.8 0.7 1.2 0.7 37.2 

C7 11.7 2.2 0.6 4.7 0.5 1.0 1.1 26.5 
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SMAR Steady-State C2-C5 volatile acids 

Sample HAc HPr l-But n-But 2-ra But I-Val n-Val TOA 
ID (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Run 10c 
571.3 A1 203.1 102.0 19.5 73.9 13.3 21.8 26.9 571.3 

A2 111.6 76.0 12.7 35.5 9.1 13.4 16.4 341.9 

A3 142.1 101.1 13.0 21.8 10.8 14.5 13.6 383.8 

B1 352.8 244.2 55.3 153.9 43.3 49.8 77.4 1250.7 

B2 129.6 74.7 12.9 34.7 14.5 14.0 15.3 365.9 

B3 39.2 30.1 2.2 4.2 1.6 2.0 2.5 96.3 

B4 . 30.1 24.8 1.4 1.7 1.3 1.5 2.0 74.4 

B5 26.7 31.7 1.3 0.6 1.8 3.9 4.2 - 85.3 

CI 245.8 143.3 25.5 67.2 21.0 31.6 40.0 715.7 

C2 270.4 143.4 26.2 55.1 18.5 26.6 31.9 697.4 

C3 279.7 183.3 33.2 68.2 27.5 42.2 49.5 857.2 

C4 526.4 441.6 84.5 228.1 71.4 114.8 152.8 2105.5 

C5 208.5 112.8 14.6 51.2 13.7 20.4 24.0 542.8 

C6 91.5 63.7 5.6 13.4 5.3 7.4 6.7 231.0 

C7 82.5 51.9 6.2 6.2 6.3 7.4 3.5 194.0 
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